Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 32(4): 746-754, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33689309

RESUMO

Although peptide motifs represent the majority of cleavable linkers used in clinical-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, we address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymatic cleavage events mediate payload release. We prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. We used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as our model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technology with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC's therapeutic index for improved patient outcomes.


Assuntos
Antineoplásicos/toxicidade , Antígenos CD79/toxicidade , Imunoconjugados/toxicidade , Animais , Antineoplásicos/química , Antígenos CD79/química , Endocitose , Feminino , Hidrólise , Imunoconjugados/química , Imunoconjugados/farmacocinética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer Ther ; 19(9): 1866-1874, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651200

RESUMO

Trastuzumab and the related ADC, ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2+ breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due, in part, to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site specifically conjugated to maytansine through a noncleavable linker. This construct, termed CAT-01-106, has a drug-to-antibody ratio (DAR) of 1.8, approximately half the average DAR of T-DM1, which comprises a mixture of antibodies variously conjugated with DARs ranging from 0 to 8. The high DAR species present in T-DM1 contribute to its toxicity and limit its clinical dose. CAT-01-106 showed superior in vivo efficacy compared with T-DM1 at equal payload dosing and was equally or better tolerated compared with T-DM1 at equal payload dosing up to 120 mg/kg in Sprague-Dawley rats and 60 mg/kg in cynomolgus monkeys. CAT-01-106 also showed improved pharmacokinetics in rats relative to T-DM1, with 40% higher ADC exposure levels. Together, the data suggest that CAT-01-106 may be sufficiently tolerable to enable clinical dosing at trastuzumab-equivalent exposure levels, combining the functions of both the antibody and the payload in one drug and potentially improving patient outcomes.


Assuntos
Ado-Trastuzumab Emtansina/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/administração & dosagem , Maitansina/química , Trastuzumab/química , Ado-Trastuzumab Emtansina/efeitos adversos , Ado-Trastuzumab Emtansina/farmacocinética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Macaca fascicularis , Dose Máxima Tolerável , Ratos , Ratos Sprague-Dawley , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Antibodies (Basel) ; 8(4)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694242

RESUMO

A promising molecular target for aggressive cancers is the urokinase receptor (uPAR). A fully human, recombinant antibody that binds uPAR to form a stable complex that blocks uPA-uPAR interactions (2G10) and is internalized primarily through endocytosis showed efficacy in a mouse xenograft model of highly aggressive, triple negative breast cancer (TNBC). Antibody-drug conjugates (ADCs) of 2G10 were designed and produced bearing tubulin inhibitor payloads ligated through seven different linkers. Aldehyde tag technology was employed for linking, and either one or two tags were inserted into the antibody heavy chain, to produce site-specifically conjugated ADCs with drug-to-antibody ratios of either two or four. Both cleavable and non-cleavable linkers were combined with two different antimitotic toxins-MMAE (monomethylauristatin E) and maytansine. Nine different 2G10 ADCs were produced and tested for their ability to target uPAR in cell-based assays and a mouse model. The anti-uPAR ADC that resulted in tumor regression comprised an MMAE payload with a cathepsin B cleavable linker, 2G10-RED-244-MMAE. This work demonstrates in vitro activity of the 2G10-RED-244-MMAE in TNBC cell lines and validates uPAR as a therapeutic target for TNBC.

4.
Oncoimmunology ; 8(4): e1565859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906660

RESUMO

Oncology treatment has been revolutionized by the introduction of immune checkpoint inhibitor drugs, which enable 20-40% of patients to generate anti-tumor immune responses. Combination treatment approaches with chemotherapeutic drugs may enable responses in the remaining patient cohorts. In this regard, a handful of drugs are promising due to their ability to induce immunogenic cell death in target cells. However, these agents are systemically delivered and indiscriminately cytotoxic to proliferating cells. By contrast, antibody-drug conjugates can selectively deliver a cytotoxic payload to a tumor, sparing most healthy cells. The ability of antibody-drug conjugates to induce immunogenic cell death in target cells has not yet been determined, although preclinical in vivo studies suggest this possibility. Here, we describe for the first time production of the in vitro hallmarks of immunogenic cell death - ecto-calreticulin and secreted ATP and HMGB1 protein - by cells in response to treatment with antibody-drug conjugates bearing a maytansine payload.

5.
Mol Cancer Ther ; 17(1): 161-168, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142069

RESUMO

Hematologically derived tumors make up ∼10% of all newly diagnosed cancer cases in the United States. Of these, the non-Hodgkin lymphoma (NHL) designation describes a diverse group of cancers that collectively rank among the top 10 most commonly diagnosed cancers worldwide. Although long-term survival trends are improving, there remains a significant unmet clinical need for treatments to help patients with relapsed or refractory disease, one cause of which is drug efflux through upregulation of xenobiotic pumps, such as MDR1. CD22 is a clinically validated target for the treatment of NHL, but no anti-CD22 agents have yet been approved for this indication. Recent approval of an anti-CD22 antibody-drug conjugate (ADC) for the treatment of relapsed/refractory ALL supports the rationale for targeting this protein. An opportunity exists for a next-generation anti-CD22 antibody-drug conjugate (ADC) to address unmet medical needs in the relapsed/refractory NHL population. We describe a site-specifically conjugated antibody-drug conjugate, made using aldehyde tag technology, targeted against CD22 and bearing a noncleavable maytansine payload that is resistant to MDR1-mediated efflux. The construct was efficacious against CD22+ NHL xenografts and could be repeatedly dosed in cynomolgus monkeys at 60 mg/kg with no observed significantly adverse effects. Exposure to total ADC at these doses (as assessed by AUC0-inf) indicated that the exposure needed to achieve efficacy was below tolerable limits. Together, the data suggest that this drug has the potential to be used effectively in patients with CD22+ tumors that have developed MDR1-related resistance to prior therapies. Mol Cancer Ther; 17(1); 161-8. ©2017 AACR.


Assuntos
Imunoconjugados/farmacologia , Maitansina/administração & dosagem , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Animais , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
6.
BioDrugs ; 31(6): 521-531, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29119409

RESUMO

The antibody-drug conjugate (ADC) field is in a transitional period. Older approaches to conjugate composition and dosing regimens still dominate the ADC clinical pipeline, but preclinical work is driving a rapid evolution in how we strategize to improve efficacy and reduce toxicity towards better therapeutic outcomes. These advances are largely based upon a body of investigational studies that together offer a deeper understanding of the absorption, distribution, metabolism, and excretion (ADME) and drug metabolism and pharmacokinetics (DMPK) fates of both the intact conjugate and its small-molecule component. Knowing where the drug goes and how it is processed allows mechanistic connections to be drawn with commonly observed clinical toxicities. The field is also starting to consider ADC interactions with the immune system and potential synergistic therapeutic opportunities therein. In an indication of future directions for the field, antibody conjugates bearing non-cytotoxic small-molecule payloads are being developed to reduce side effects associated with treatment of chronic diseases. ADCs are not a magic bullet to cure disease. However, they will increasingly become valuable therapeutic tools to improve patient outcomes across a variety of indications.


Assuntos
Antineoplásicos/farmacocinética , Imunoconjugados/efeitos adversos , Imunoconjugados/uso terapêutico , Imunoterapia/métodos , Animais , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta Imunológica , Humanos , Imunidade Inata/efeitos dos fármacos , Imunoconjugados/química
7.
MAbs ; 9(5): 801-811, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28406343

RESUMO

Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies.


Assuntos
Imunoconjugados/análise , Espectrometria de Massas/métodos , Humanos
8.
Curr Opin Chem Biol ; 28: 174-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26342601

RESUMO

Antibody-drug conjugates (ADCs) have become de rigueur for pharmaceutical oncology drug development pipelines. There are more than 40 ADCs undergoing clinical trials and many more in preclinical development. The field has rushed to follow the initial successes of Kadcyla™ and Adcetris™, and moved forward with new targets without much pause for optimization. In some respects, the ADC space has become divided into the clinical realm-where the proven technologies continue to represent the bulk of clinical candidates with a few exceptions-and the research realm-where innovations in conjugation chemistry and linker technologies have suggested that there is much room for improvement in the conventional methods. Now, two and four years after the approvals of Kadcyla™ and Adcetris™, respectively, consensus may at last be building that these two drugs rely on rather unique target antigens that enable their success. It is becoming increasingly clear that future target antigens will require additional innovative approaches. Next-generation ADCs have begun to move out of the lab and into the clinic, where there is a pressing need for continued innovation to overcome the twin challenges of safety and efficacy.


Assuntos
Descoberta de Drogas/métodos , Imunoconjugados/química , Imunoconjugados/farmacologia , Animais , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacocinética , Preparações Farmacêuticas/química
9.
J Biol Chem ; 290(25): 15730-15745, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25931126

RESUMO

To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity.


Assuntos
Proteínas de Bactérias/química , Coenzimas/química , Cobre/química , Streptomyces coelicolor/enzimologia , Sulfatases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Cobre/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Streptomyces coelicolor/genética , Sulfatases/genética , Sulfatases/metabolismo
10.
Chem Biol ; 22(2): 293-8, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25619935

RESUMO

There is a need for facile chemistries that allow for chemo- and regioselectivity in bioconjugation reactions. To address this need, we are pioneering site-specific bioconjugation methods that use formylglycine as a bioorthogonal handle on a protein surface. Here we introduce aldehyde-specific bioconjugation chemistry, the trapped-Knoevenagel ligation. The speed and stability of the trapped-Knoevenagel ligation further advances the repertoire of aldehyde-based bioconjugations and expands the toolbox for site-specific protein modifications. The trapped-Knoevenagel ligation reaction can be run at near neutral pH in the absence of catalysts to produce conjugates that are stable under physiological conditions. Using this new ligation, we generated an antibody-drug conjugate that demonstrates excellent efficacy in vitro and in vivo.


Assuntos
Carbono/química , Proteínas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Brentuximab Vedotin , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Pirazóis/química , Trastuzumab/química
11.
Eur J Med Chem ; 88: 3-9, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25176286

RESUMO

In the context of antibody-drug conjugates (ADCs), noncleavable linkers provide a means to deliver cytotoxic small molecules to cell targets while reducing systemic toxicity caused by nontargeted release of the free drug. Additionally, noncleavable linkers afford an opportunity to change the chemical properties of the small molecule to improve potency or diminish affinity for multidrug transporters, thereby improving efficacy. We employed the aldehyde tag coupled with the hydrazino-iso-Pictet-Spengler (HIPS) ligation to generate a panel of site-specifically conjugated ADCs that varied only in the noncleavable linker portion. The ADC panel comprised antibodies carrying a maytansine payload ligated through one of five different linkers. Both the linker-maytansine constructs alone and the resulting ADC panel were characterized in a variety of in vitro and in vivo assays measuring biophysical and functional properties. We observed that slight differences in linker design affected these parameters in disparate ways, and noted that efficacy could be improved by selecting for particular attributes. These studies serve as a starting point for the exploration of more potent noncleavable linker systems.


Assuntos
Anticorpos/química , Antineoplásicos/química , Imunoconjugados/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imunoconjugados/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos SCID , Conformação Molecular
12.
Int J Dev Biol ; 58(2-4): 87-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25023674

RESUMO

Susan Fisher has spent her career studying human development, proteomics, and the intersection between the two. When she began studying human placentation, there had been extensive descriptive studies of this fascinating organ that intertwines with the mother's vasculature during pregnancy. Susan can be credited with numerous major findings on the mechanisms that regulate placental cytotrophoblast invasion. These include the discovery that cytotrophoblasts undergo vascular mimicry to insert themselves into uterine arteries, the finding that oxygen tension greatly effects placentation, and identifying how these responses go awry in pregnancy complications such as preeclamsia. Other important work has focused on the effect of post-translational modifications such as glycosylation on bacterial adhesion and reproduction. Susan has also forayed into the world of proteomics to identify cancer biomarkers. Because her work is truly groundbreaking, many of these findings inspire research in other laboratories around the world resulting in numerous follow up papers. Likewise, her mentoring and support inspires young scientists to go on and make their own important discoveries. In this interview, Susan shares what drove her science, how she continued to do important research while balancing other aspects of life, and provides insights for the next generation.


Assuntos
Desenvolvimento Humano/fisiologia , Reprodução/fisiologia , Humanos
13.
Bioconjug Chem ; 25(7): 1331-41, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24924618

RESUMO

It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody-drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C-C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate.


Assuntos
Aldeídos/química , Anticorpos Monoclonais/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Receptor ErbB-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Neoplasias da Mama/patologia , Feminino , Humanos , Imunoconjugados/farmacologia , Camundongos , Camundongos SCID , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Electrophoresis ; 35(24): 3487-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24853916

RESUMO

Human plasma contains proteins that reflect overall health and represents a rich source of proteins for identifying and understanding disease pathophysiology. However, few studies have investigated changes in plasma phosphoproteins. In addition, little is known about the normal variations in these phosphoproteins, especially with respect to specific sites of modification. To address these questions, we evaluated variability in plasma protein phosphorylation in healthy individuals using multiple reaction monitoring (MRM) and SWATH-MS2 data-independent acquisition. First, we developed a discovery workflow for phosphopeptide enrichment from plasma and identified targets for MRM assays. Next, we analyzed plasma from healthy donors using an analytical workflow consisting of MRM and SWATH-MS2 that targeted phosphopeptides from 58 and 68 phosphoproteins, respectively. These two methods produced similar results showing low variability in 13 phosphosites from 10 phosphoproteins (CVinter < 30%) and high interpersonal variation of 16 phosphosites from 14 phosphoproteins (CVinter > 30%). Moreover, these phosphopeptides originate from phosphoproteins involved in cellular processes governing homeostasis, immune response, cell-extracellular matrix interactions, lipid and sugar metabolism, and cell signaling. This limited assessment of technical and biological variability in phosphopeptides generated from plasma phosphoproteins among healthy volunteers constitutes a reference for future studies that target protein phosphorylation as biomarkers.


Assuntos
Cromatografia Líquida/métodos , Fosfopeptídeos/sangue , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Sequência de Aminoácidos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fosforilação , Fluxo de Trabalho , Adulto Jovem
15.
J Clin Invest ; 123(7): 2862-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23934129

RESUMO

During human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4%-8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) and, in some patients, fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously, we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, we cultured CTBs isolated from PE and control placentas for 48 hours, enabling differentiation and invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation, including upregulation of SEMA3B, which resolved in culture. The addition of SEMA3B to normal CTBs inhibited invasion and recreated aspects of the PE phenotype. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression; the autocrine actions of the upregulated molecules (including SEMA3B) impair CTB differentiation, invasion and signaling; and patient-specific factors determine the signs.


Assuntos
Regulação da Expressão Gênica , Pré-Eclâmpsia/metabolismo , Transcriptoma , Trofoblastos/metabolismo , Animais , Células COS , Diferenciação Celular , Movimento Celular , Embrião de Galinha , Chlorocebus aethiops , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transdução de Sinais , Trofoblastos/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , beta Catenina/metabolismo
16.
Glycobiology ; 23(5): 593-602, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23208007

RESUMO

Polysialic acid (polySia) is a large, cell-surface linear homopolymer composed of α2,8-linked sialic acid residues. Most extensively studied in the nervous system, this unique glycan modulates development by enhancing cell migration and regulating differentiation. PolySia also functions in developing and adult immune systems and is a signature of many cancers. In this study, we demonstrated that human placental trophoblasts, an epithelial lineage, also display this glycan. Cytotrophoblasts and syncytiotrophoblasts expressed polySia in the first trimester and downregulated it during the course of pregnancy. PolySia promoted cytotrophoblast migration in an explant model of chorionic villous growth. Removal of this glycan also reduced cytotrophoblast penetration of basement membranes in an in vitro model of invasion. Finally, we showed that polySia was overexpressed in biopsies from patients with gestational trophoblastic diseases, including benign molar pregnancies and malignant choriocarcinomas. These results demonstrated, for the first time, functional roles for polySia during normal human placental development and implicated these unusual oligosaccharides in the unrestrained invasion of trophoblast tumors.


Assuntos
Movimento Celular , Invasividade Neoplásica , Ácidos Siálicos/metabolismo , Trofoblastos/metabolismo , Apoptose , Coriocarcinoma/metabolismo , Vilosidades Coriônicas/metabolismo , Vilosidades Coriônicas/patologia , Regulação para Baixo , Feminino , Humanos , Mola Hidatiforme/metabolismo , Gravidez , Trofoblastos/efeitos dos fármacos , Células Tumorais Cultivadas , Neoplasias Uterinas/metabolismo
17.
J Proteome Res ; 11(4): 2508-20, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22309216

RESUMO

We used a lectin chromatography/MS-based approach to screen conditioned medium from a panel of luminal (less aggressive) and triple negative (more aggressive) breast cancer cell lines (n=5/subtype). The samples were fractionated using the lectins Aleuria aurantia (AAL) and Sambucus nigra agglutinin (SNA), which recognize fucose and sialic acid, respectively. The bound fractions were enzymatically N-deglycosylated and analyzed by LC-MS/MS. In total, we identified 533 glycoproteins, ∼90% of which were components of the cell surface or extracellular matrix. We observed 1011 glycosites, 100 of which were solely detected in ≥3 triple negative lines. Statistical analyses suggested that a number of these glycosites were triple negative-specific and thus potential biomarkers for this tumor subtype. An analysis of RNaseq data revealed that approximately half of the mRNAs encoding the protein scaffolds that carried potential biomarker glycosites were up-regulated in triple negative vs luminal cell lines, and that a number of genes encoding fucosyl- or sialyltransferases were differentially expressed between the two subtypes, suggesting that alterations in glycosylation may also drive candidate identification. Notably, the glycoproteins from which these putative biomarker candidates were derived are involved in cancer-related processes. Thus, they may represent novel therapeutic targets for this aggressive tumor subtype.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cromatografia de Afinidade/métodos , Glicoproteínas/análise , Lectinas/química , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Feminino , Glicoproteínas/química , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Humanos , Lectinas/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteoma/análise , Proteoma/química
18.
Anal Biochem ; 408(1): 71-85, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20705048

RESUMO

Glycans are cell-type-specific, posttranslational protein modifications that are modulated during developmental and disease processes. As such, glycoproteins are attractive biomarker candidates. Here, we describe a mass spectrometry-based workflow that incorporates lectin affinity chromatography to enrich for proteins that carry specific glycan structures. As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin (SNA) and Aleuria aurantia lectin (AAL), lectins which bind sialic acid- and fucose-containing structures, respectively. Fucosylated and sialylated glycopeptides from human lactoferrin served as positive controls, and high-mannose structures from yeast invertase served as negative controls. The standards were spiked into Multiple Affinity Removal System (MARS) 14-depleted, trypsin-digested human plasma from healthy donors. Samples were loaded onto lectin columns, separated by HPLC into flow-through and bound fractions, and treated with peptide: N-glycosidase F to remove N-linked glycans. The deglycosylated peptide fractions were interrogated by ESI HPLC-MS/MS. We identified a total of 122 human plasma glycoproteins containing 247 unique glycosites. Importantly, several of the observed glycoproteins (e.g., cadherin 5 and neutrophil gelatinase-associated lipocalin) typically circulate in plasma at low nanogram per milliliter levels. Together, these results provide mass spectrometry-based evidence of the utility of incorporating lectin-separation platforms into cancer biomarker discovery pipelines.


Assuntos
Biomarcadores Tumorais/química , Cromatografia Líquida de Alta Pressão/métodos , Glicoproteínas/química , Lectinas/química , Polissacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores Tumorais/sangue , Cromatografia de Afinidade/métodos , Bases de Dados Factuais , Feminino , Glicopeptídeos/química , Glicoproteínas/sangue , Glicoproteínas/metabolismo , Humanos , Masculino , Neoplasias/diagnóstico , Polissacarídeos/isolamento & purificação , Ligação Proteica , Tripsina/metabolismo
19.
Clin Chem ; 56(2): 223-36, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19959616

RESUMO

BACKGROUND: Cancer has profound effects on gene expression, including a cell's glycosylation machinery. Thus, tumors produce glycoproteins that carry oligosaccharides with structures that are markedly different from the same protein produced by a normal cell. A single protein can have many glycosylation sites that greatly amplify the signals they generate compared with their protein backbones. CONTENT: In this article, we survey clinical tests that target carbohydrate modifications for diagnosing and treating cancer. We present the biological relevance of glycosylation to disease progression by highlighting the role these structures play in adhesion, signaling, and metastasis and then address current methodological approaches to biomarker discovery that capitalize on selectively capturing tumor-associated glycoforms to enrich and identify disease-related candidate analytes. Finally, we discuss emerging technologies--multiple reaction monitoring and lectin-antibody arrays--as potential tools for biomarker validation studies in pursuit of clinically useful tests. SUMMARY: The future of carbohydrate-based biomarker studies has arrived. At all stages, from discovery through verification and deployment into clinics, glycosylation should be considered a primary readout or a way of increasing the sensitivity and specificity of protein-based analyses.


Assuntos
Biomarcadores Tumorais/sangue , Glicoproteínas/sangue , Proteínas de Neoplasias/sangue , Neoplasias/sangue , Glicosilação , Humanos , Lectinas/química , Espectrometria de Massas/métodos
20.
J Vis Exp ; (32)2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19798022

RESUMO

Glycans are an important class of post-translational modifications. Typically found on secreted and extracellular molecules, glycan structures signal the internal status of the cell. Glycans on tumor cells tend to have abundant sialic acid and fucose moieties. We propose that these cancer-associated glycan variants be exploited for biomarker development aimed at diagnosing early-stage disease. Accordingly, we developed a mass spectrometry-based workflow that incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan structures. The lectins Sambucus nigra (SNA) and Aleuria aurantia (AAL), which bind sialic acid and fucose, respectively, were covalently coupled to POROS beads (Applied Biosystems) and packed into PEEK columns for high pressure liquid chromatography (HPLC). Briefly, plasma was depleted of the fourteen most abundant proteins using a multiple affinity removal system (MARS-14; Agilent). Depleted plasma was trypsin-digested and separated into flow-through and bound fractions by SNA or AAL HPLC. The fractions were treated with PNGaseF to remove N-linked glycans, and analyzed by LC-MS/MS on a QStar Elite. Data were analyzed using Mascot software. The experimental design included positive controls-fucosylated and sialylated human lactoferrin glycopeptides-and negative controls-high mannose glycopeptides from Saccharomyces cerevisiae-that were used to monitor the specificity of lectin capture. Key features of this workflow include the reproducibility derived from the HPLC format, the positive identification of the captured and PNGaseF-treated glycopeptides from their deamidated Asn-Xxx-Ser/Thr motifs, and quality assessment using glycoprotein standards. Protocol optimization also included determining the appropriate ratio of starting material to column capacity, identifying the most efficient capture and elution buffers, and monitoring the PNGaseF-treatment to ensure full deglycosylation. Future directions include using this workflow to perform mass spectrometry-based discovery experiments on plasma from breast cancer patients and control individuals.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Glicopeptídeos/isolamento & purificação , Lectinas/química , Lectinas de Plantas/química , Proteínas Inativadoras de Ribossomos/química , Proteínas Sanguíneas/isolamento & purificação , Glicopeptídeos/sangue , Humanos , Lactoferrina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA