RESUMO
BACKGROUND: Urinary biomarkers are needed to improve the care and reduce the cost of managing bladder cancer. Current biomarkers struggle to identify both high and low-grade cancers due to differing molecular pathways. Changes in microRNA (miR) expression are seen in urothelial carcinogenesis in a phenotype-specific manner. We hypothesised that urinary miRs reflecting low- and high-grade pathways could detect bladder cancers and overcome differences in genetic events seen within the disease. METHODS: We investigated urinary samples (n=121) from patients with bladder cancer (n=68) and age-matched controls (n=53). Fifteen miRs were quantified using real-time PCR. RESULTS: We found that miR is stable within urinary cells despite adverse handling and detected differential expression of 10 miRs from patients with cancer and controls (miRs-15a/15b/24-1/27b/100/135b/203/212/328/1224, ANOVA P<0.05). Individually, miR-1224-3p had the best individual performance with specificity, positive and negative predictive values and concordance of 83%, 83%, 75% and 77%, respectively. The combination of miRs-135b/15b/1224-3p detected bladder cancer with a high sensitivity (94.1%), sufficient specificity (51%) and was correct in 86% of patients (concordance). CONCLUSION: The use of this panel in patients with haematuria would have found 94% of urothelial cell carcinoma, while reducing cystoscopy rates by 26%. However, two invasive cancers (3%) would have been missed.
Assuntos
Biomarcadores Tumorais/urina , MicroRNAs/urina , Neoplasias da Bexiga Urinária/urina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Neoplasias da Bexiga Urinária/diagnóstico , Adulto JovemRESUMO
Polypropylenimine (PPI) dendrimers appear attractive non-viral vectors for the delivery of genes, antisense oligonucleotides, and small interfering RNA (siRNA). However, the effects of these synthetic gene delivery vectors on global gene expression are poorly understood. Here we have examined the toxicogenomics of generation 2 (DAB-8) and generation 3 (DAB-16) PPI dendrimers in two human cell lines. At concentrations and treatment protocols routinely used for gene and oligonucleotide transfection, PPI dendrimers alone elicited marked changes in endogenous gene expression in A431 epithelial cells. The extent of PPI-induced gene changes appeared to be dependent on the dendrimer generation as the number of genes affected was greater with G3 compared to G2 PPI dendrimers in A431 cells. The signature of DAB16-induced gene changes in A549 cells was different to those elicited in A431 cells implying a strong dependence on cell type. The DAB-16 polymer complexed with DNA (dendriplexes) also elicited marked gene expression changes in A549 cells but with a signature that was different from the polymer alone implying that dendriplexes are "recognised" by cells as chemical entities that are distinct from the polymer alone. Alterations in expression of a variety of gene ontologies were observed including those involved in defence responses, cell proliferation and apoptosis. Although there was a tendency for increased DNA damage in cells treated with DAB16 alone or its DNA dendriplexes as detected by the COMET assay, these differences were not statistically significant. These data show for the first time that PPI-dendrimers, separate from their capability as transfection reagents, can intrinsically alter the expression of many endogenous genes that could potentially lead to them exerting multiple biological effects in cells. The impact and consequences of polymer-induced gene changes should guide their rational use as delivery systems for gene-based therapeutics.