Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125721

RESUMO

Para-hydroxycinnamic acid (pHCA) is one of the most abundant naturally occurring hydroxycinnamic acids, a class of chemistries known for their antioxidant properties. In this study, we evaluated the impact of pHCA on different parameters of skin aging in in vitro skin models after H2O2 and UV exposure. These parameters include keratinocyte senescence and differentiation, inflammation, and energy metabolism, as well as the underlying molecular mechanisms. Here we demonstrate that pHCA prevents oxidative stress-induced premature senescence of human primary keratinocytes in both 2D and 3D skin models, while improving clonogenicity in 2D. As aging is linked to inflammation, referred to as inflammaging, we analyzed the release of IL-6, IL-8, and PGE2, known to be associated with senescence. All of them were downregulated by pHCA in both normal and oxidative stress conditions. Mechanistically, DNA damage induced by oxidative stress is prevented by pHCA, while pHCA also exerts a positive effect on the mitochondrial and glycolytic functions under stress. Altogether, these results highlight the protective effects of pHCA against inflammaging, and importantly, help to elucidate its potential mechanisms of action.


Assuntos
Senescência Celular , Ácidos Cumáricos , Queratinócitos , Estresse Oxidativo , Envelhecimento da Pele , Pele , Humanos , Ácidos Cumáricos/farmacologia , Senescência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Inflamação/metabolismo , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Raios Ultravioleta/efeitos adversos , Antioxidantes/farmacologia , Células Cultivadas , Interleucina-8/metabolismo , Interleucina-6/metabolismo
2.
Front Physiol ; 14: 1297637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074322

RESUMO

Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.

4.
Cell Cycle ; 19(24): 3508-3520, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33305692

RESUMO

Aneuploidy is the condition of having an imbalanced karyotype, which is associated with tumor initiation, evolution, and acquisition of drug-resistant features, possibly by generating heterogeneous populations of cells with distinct genotypes and phenotypes. Multicellular eukaryotes have therefore evolved a range of extrinsic and cell-autonomous mechanisms for restraining proliferation of aneuploid cells, including activation of the tumor suppressor protein p53. However, accumulating evidence indicates that a subset of aneuploid cells can escape p53-mediated growth restriction and continue proliferating in vitro. Here we show that such aneuploid cell lines display a robust modal karyotype and low frequency of chromosomal aberrations despite ongoing chromosome instability. Indeed, while these aneuploid cells are able to survive for extended periods in vitro, their chromosomally unstable progeny remain subject to p53-induced senescence and growth restriction, leading to subsequent elimination from the aneuploid pool. This mechanism helps maintain low levels of heterogeneity in aneuploid populations and may prevent detrimental evolutionary processes such as cancer progression and development of drug resistance.


Assuntos
Aneuploidia , Senescência Celular/genética , Células Epiteliais/metabolismo , Epitélio Pigmentado da Retina/citologia , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Instabilidade Cromossômica/genética , Segregação de Cromossomos/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Cariótipo , Proteína Supressora de Tumor p53/genética
5.
Oncogene ; 39(9): 2030, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31754212

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Oncogene ; 38(7): 998-1018, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190546

RESUMO

Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.


Assuntos
Proteína Quinase CDC2/metabolismo , Perda do Embrião/enzimologia , Embrião de Mamíferos/enzimologia , Mitose , Fase S , Substituição de Aminoácidos , Animais , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perda do Embrião/genética , Perda do Embrião/patologia , Embrião de Mamíferos/patologia , Ativação Enzimática , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
iScience ; 10: 40-52, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30500481

RESUMO

The modulation of protein-protein interactions (PPIs) is an essential regulatory activity defining diverse cell functions in development and disease. BioID is an unbiased proximity-dependent biotinylation method making use of a biotin-protein ligase fused to a protein of interest and has become an important tool for mapping of PPIs within cellular contexts. We devised an advanced method, 2C-BioID, in which the biotin-protein ligase is kept separate from the protein of interest, until the two are induced to associate by the addition of a dimerizing agent. As proof of principle, we compared the interactomes of lamina-associated polypeptide 2ß (LAP2ß) with those of lamins A and C, using 2C- and conventional BioID. 2C-BioID greatly enhanced data robustness by facilitating the in silico elimination of non-specific interactors as well as overcoming the problems associated with aberrant protein localization. 2C-BioID therefore significantly strengthens the specificity and reliability of BioID-based interactome analysis, by the more stringent exclusion of false-positives and more efficient intracellular targeting.

8.
Front Genet ; 9: 247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190724

RESUMO

Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.

9.
Sci Rep ; 7(1): 15678, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142250

RESUMO

Skin ageing is an inevitable consequence of life and accelerated by exposure to ultraviolet (UV) rays. Senescence is an irreversible growth arrest and senescent cells accumulate in ageing tissues, at sites of age-related pathologies and in pre-neoplastic lesions. Conventionally, senescent cells have been detected by senescence associated-ß-galactosidase (SA-ß-gal) staining, a procedure that requires enzymatic activity, which is lost in fixed tissue samples. We previously demonstrated that loss of lamin B1 is a novel marker to identify senescent cells. Here, we demonstrate that loss of lamin B1 facilitates the detection and quantification of senescent cells upon UV-exposure in vitro and upon chronic UV-exposure and skin regeneration in vivo. Taken together, this marker enables the study of environmental conditions on tissue ageing and regeneration in vivo, serves as a diagnostic tool to distinguish senescent from proliferating cells in pre-neoplastic lesions, and facilitates investigating the role of senescent cells in various age-related pathologies.


Assuntos
Senescência Celular/genética , Lamina Tipo B/genética , Envelhecimento da Pele/genética , beta-Galactosidase/genética , Biomarcadores/metabolismo , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Cultura Primária de Células , Regeneração/genética , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/patologia , Raios Ultravioleta/efeitos adversos
10.
Gene ; 576(1 Pt 2): 292-303, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26484394

RESUMO

Chronic use of heparin as an anti-coagulant for the treatment of thrombosis or embolism invokes many adverse systemic events including thrombocytopenia, vascular reactions and osteoporosis. Here, we addressed whether adverse effects might also be directed to mesenchymal stem cells that reside in the bone marrow compartment. Harvested human bone marrow-derived mesenchymal stem cells (hMSCs) were exposed to varying doses of heparin and their responses profiled. At low doses (<200 ng/ml), serial passaging with heparin exerted a variable effect on hMSC proliferation and multipotentiality across multiple donors, while at higher doses (≥ 100 µg/ml), heparin supplementation inhibited cell growth and increased both senescence and cell size. Gene expression profiling using cDNA arrays and RNA-seq analysis revealed pleiotropic effects of low-dose heparin on signaling pathways essential to hMSC growth and differentiation (including the TGFß/BMP superfamily, FGFs, and Wnts). Cells serially passaged in low-dose heparin possess a donor-dependent gene signature that reflects their altered phenotype. Our data indicate that heparin supplementation during the culturing of hMSCs can alter their biological properties, even at low doses. This warrants caution in the application of heparin as a culture supplement for the ex vivo expansion of hMSCs. It also highlights the need for careful evaluation of the bone marrow compartment in patients receiving chronic heparin treatment.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Heparina/efeitos adversos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Relação Dose-Resposta a Droga , Heparina/farmacologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Transdução de Sinais/efeitos dos fármacos
11.
Elife ; 42015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26312502

RESUMO

Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Progéria/patologia , Telômero/metabolismo , Humanos , Microscopia , Ligação Proteica
12.
J Cell Biol ; 200(5): 605-17, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23439683

RESUMO

The nuclear lamina consists of A- and B-type lamins. Mutations in LMNA cause many human diseases, including progeria, a premature aging syndrome, whereas LMNB1 duplication causes adult-onset autosomal dominant leukodystrophy (ADLD). LMNB1 is reduced in cells from progeria patients, but the significance of this reduction is unclear. In this paper, we show that LMNB1 protein levels decline in senescent human dermal fibroblasts and keratinocytes, mediated by reduced transcription and inhibition of LMNB1 messenger ribonucleic acid (RNA) translation by miRNA-23a. This reduction is also observed in chronologically aged human skin tissue. To determine whether altered LMNB1 levels cause senescence, we either increased or reduced LMNB1. Both LMNB1 depletion and overexpression inhibited proliferation, but only LMNB1 overexpression induced senescence, which was prevented by telomerase expression or inactivation of p53. This phenotype was exacerbated by a simultaneous reduction of LMNA/C. Our results demonstrate that altering LMNB1 levels inhibits proliferation and are relevant to understanding the molecular pathology of ADLD.


Assuntos
Proliferação de Células , Senescência Celular , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Lamina Tipo B/metabolismo , Diferenciação Celular , Células Cultivadas , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Fibroblastos/patologia , Genótipo , Humanos , Queratinócitos/patologia , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Lâmina Nuclear/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Fenótipo , Interferência de RNA , RNA Mensageiro/metabolismo , Envelhecimento da Pele , Telomerase/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
13.
Cell Stem Cell ; 9(2): 156-65, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816366

RESUMO

Somatic tissues in female eutherian mammals are mosaic due to random X inactivation. In contrast to mice, X chromosome reactivation does not occur during the reprogramming of human female somatic cells to induced pluripotent stem cells (iPSCs), although this view is contested. Using balanced populations of female Rett patient and control fibroblasts, we confirm that all cells in iPSC colonies contain an inactive X, and additionally find that all colonies made from the same donor fibroblasts contain the same inactive X chromosome. Notably, this extreme "skewing" toward a particular dominant, active X is also a general feature of primary female fibroblasts during proliferation, and the skewing seen in reprogramming and fibroblast culture can be alleviated by overexpression of telomerase. These results have important implications for in vitro modeling of X-linked diseases and the interpretation of long-term culture studies in cancer and senescence using primary female fibroblast cell lines.


Assuntos
Reprogramação Celular/genética , Cromossomos Humanos X/metabolismo , Telomerase/metabolismo , Animais , Sequência de Bases , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Inativação do Cromossomo X
14.
EMBO Rep ; 10(7): 714-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543232

RESUMO

For much of the last century, the differentiated state that characterizes the many cell types of an adult organism was thought to be stable and abrogated only in rare instances by transdifferentiation, metaplasia or cancer. This stability was thought to reside in the autoregulatory molecular circuitry that exists between the cytoplasm and the nucleus, a status quo that could be disrupted during somatic cell nuclear transfer, to reprogramme cells to a pluripotent state. Pioneering work in the 1980s showed that transdifferentiation of cell lineages could be induced by the addition of transcription factors. However, these conversions were usually confined to cell types from the same germ layer, and proof of conversion was difficult to obtain. This deficiency has now been overturned by demonstrations that exogenously added transcription factors can convert differentiated cell types into embryonic-like induced pluripotent stem cells. Here, we highlight the recent progress, and the implications of this work for our understanding of the relationship between the pluripotent and more differentiated cell states.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Animais , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Cinética , Células-Tronco Pluripotentes/metabolismo
15.
Stem Cell Rev ; 3(1): 7-17, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17873377

RESUMO

Cancer cells have the ability to divide indefinitely and spread to different parts of the body during metastasis. Embryonic stem cells can self-renew and, through differentiation to somatic cells, provide the building blocks of the human body. Embryonic stem cells offer tremendous opportunities for regenerative medicine and serve as an excellent model system to study early human development. Many of the molecular mechanism underlying tumorigenesis in cancer and self-renewal in stem cells have been elucidated in the past decade. Here we present a systematic analysis of seven major signaling pathways implicated in both cancer and stem cells. We present on overview of the JAK/STAT, Notch, MAPK/ERK, PI3K/AKT, NF-kB, Wnt and TGF-beta pathways and analyze their activation status in the context of cancer and stem cells. We focus on their role in stem cell self-renewal and development and identify key molecules, whose aberrant expression has been associated with malignant phenotypes. We conclude by presenting a map of the signaling networks involved in cancer and embryonic stem cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Animais , Células-Tronco Embrionárias/patologia , Humanos , Janus Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , NF-kappa B/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição STAT/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Proteínas Wnt/fisiologia
16.
Mol Cell Biol ; 26(13): 4911-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16782879

RESUMO

In cancer cells and germ cells, shortening of chromosome ends is prevented by telomerase. Telomerase-deficient cells have a replicative life span, after which they enter senescence. Senescent cells can give rise to survivors that maintain chromosome ends through recombination-based amplification of telomeric or subtelomeric repeats. We found that in Trypanosoma brucei, critically short telomeres are stable in the absence of telomerase. Telomere stabilization ensured genomic integrity and could have implications for telomere maintenance in human telomerase-deficient cells. Cloning and sequencing revealed 7 to 27 TTAGGG repeats on stabilized telomeres and no changes in the subtelomeric region. Clones with short telomeres were used to study telomere elongation dynamics, which differed dramatically at transcriptionally active and silent telomeres, after restoration of telomerase. We propose that transcription makes the termini of short telomeres accessible for rapid elongation by telomerase and that telomere elongation in T. brucei is not regulated by a protein-counting mechanism. Many minichromosomes were lost after long-term culture in the absence of telomerase, which may reflect their different mitotic segregation properties.


Assuntos
DNA de Protozoário/metabolismo , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Animais , Cromossomos/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Deleção de Sequência , Telomerase/metabolismo , Telômero/enzimologia , Transcrição Gênica
17.
Nucleic Acids Res ; 33(14): 4536-43, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16091631

RESUMO

Telomerase consists of a reverse transcriptase (TERT) and an RNA that contains a template for telomere-repeat extension. Telomerase is required to prevent telomere erosion and its activity or lack thereof is important for tumorigenesis and ageing. Telomerase has been identified in numerous organisms but it has not been studied in kinetoplastid protozoa. Trypanosoma brucei, the causative agent of African sleeping sickness, evades the host immune response by frequently changing its variant surface glycoprotein (VSG). The single expressed VSG is transcribed from one of approximately 20 subtelomeric 'Expression Sites', but the role telomeres might play in regulating VSG transcription and switching is unknown. We identified and sequenced the T.brucei TERT gene. Deleting TERT resulted in progressive telomere shortening of 3-6 bp per generation. In other organisms, the rate of telomere shortening is proportional to the length of the terminal 3' single-strand overhang. In T.brucei, G-overhangs were undetectable (<30 nt) by in-gel hybridization. The rate of telomere shortening therefore, agrees with the predicted shortening due to the end replication problem, and is consistent with our observation that G-overhangs are short. Trypanosomes whose telomere length can be manipulated provide a new tool to investigate the role of telomeres in antigenic variation.


Assuntos
Telomerase/genética , Telômero/química , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , DNA de Protozoário/química , Proteínas de Ligação a DNA , Deleção de Genes , Inativação Gênica , Guanina/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Alinhamento de Sequência , Telomerase/química , Trypanosoma brucei brucei/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA