Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Biol ; 3(1): e123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38938676

RESUMO

Cells can communicate via the release and uptake of extracellular vesicles (EVs), which are nano-sized membrane vesicles that can transfer protein and RNA cargo between cells. EVs contain microRNAs and various other types of non-coding RNA, of which Y RNA is among the most abundant types. Studies on how RNAs and their binding proteins are sorted into EVs have mainly focused on comparing intracellular (cytoplasmic) levels of these RNAs to the extracellular levels in EVs. Besides overall transcriptional levels that may regulate sorting of RNAs into EVs, the process may also be driven by local intracellular changes in RNA/RBP concentrations. Changes in extracellular Y RNA have been linked to cancer and cardiovascular diseases. Although the loading of RNA cargo into EVs is generally thought to be influenced by cellular stimuli and regulated by RNA binding proteins (RBP), little is known about Y RNA shuttling into EVs. We previously reported that immune stimulation alters the levels of Y RNA in EVs independently of cytosolic Y RNA levels. This suggests that Y RNA binding proteins, and/or changes in the local Y RNA concentration at EV biogenesis sites, may affect Y RNA incorporation into EVs. Here, we investigated the subcellular distribution of Y RNA and Y RNA binding proteins in activated and non-activated THP1 macrophages. We demonstrate that Y RNA and its main binding protein Ro60 abundantly co-fractionate in organelles involved in EV biogenesis and in EVs. Cellular activation led to an increase in Y RNA concentration at EV biogenesis sites and this correlated with increased EV-associated levels of Y RNA and Ro60. These results suggest that Y RNA incorporation into EVs may be controlled by local intracellular changes in the concentration of Y RNA and their protein binding partners.

2.
Heliyon ; 10(3): e24570, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38314306

RESUMO

RNA viruses have been shown to express various short RNAs, some of which have regulatory roles during replication, transcription, and translation of viral genomes. However, short viral RNAs generated from SARS-CoV-1 and SARS-CoV-2 genomic RNAs remained largely unexplored, possibly due limitations of the widely used library preparation methods for small RNA deep sequencing and corresponding data processing. By analyzing publicly available small RNA sequencing datasets, we observed that human Calu-3 cells infected by SARS-CoV-1 or SARS-CoV-2 accumulate multiple previously unreported short viral RNAs. In addition, we verified the presence of the five most abundant SARS-CoV-2 short viral RNAs in SARS-CoV-2-infected human lung adenocarcinoma cells by quantitative PCR. Interestingly, the copy number of the observed SARS-CoV-2 short viral RNAs dramatically exceeded the expression of previously reported viral microRNAs in the same cells. We hypothesize that the reported SARS-CoV-2 short viral RNAs could serve as biomarkers for early infection stages due to their high abundance. Furthermore, unlike SARS-CoV-1, the SARS-CoV-2 infection induced significant (Benjamini-Hochberg-corrected p-value <0.05) deregulation of Y-RNA, transfer RNA, vault RNA, as well as more than 300 endogenous short RNAs that aligned predominantly to human protein-coding and long noncoding RNA transcripts. In particular, more than 20-fold upregulation of reads derived from Y-RNA (and several transfer RNAs) have been documented in RNA-seq datasets from SARS-CoV-2 infected cells. Finally, a significant proportion of short RNAs derived from full-length viral genomes also aligned to various human genome (hg38) sequences, suggesting opportunities to investigate regulatory roles of short viral RNAs during infection. Further characterization of the small RNA landscape of both viral and host genomes is clearly warranted to improve our understanding of molecular events related to infection and to design more efficient strategies for therapeutic interventions as well as early diagnosis.

3.
J Extracell Vesicles ; 11(3): e12192, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35289114

RESUMO

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster (Mesocricetus auratus) model of COVID-19. Intranasal immunization resulted in high titres of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titres in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.


Assuntos
COVID-19 , Vesículas Extracelulares , Vacinas Virais , Animais , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Lipossomos , Mamíferos , Nanopartículas , SARS-CoV-2
4.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132418

RESUMO

Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.

5.
Vet Comp Oncol ; 20(2): 381-392, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34743398

RESUMO

Circulating nucleic acids and extracellular vesicles (EV) represent novel biomarkers to diagnose cancer. The non-invasive nature of these so-called liquid biopsies provides an attractive alternative to tissue biopsy-based cancer diagnostics. This study aimed to investigate if circulating cell cycle-related E2F target transcripts can be used to diagnose tumours in canine tumour patients with different types of tumours. Furthermore, we assessed if these mRNAs are localised within circulating EV. We isolated total RNA from the plasma of 20 canine tumour patients and 20 healthy controls. Four E2F target genes (CDC6, DHFR, H2AFZ and ATAD2) were selected based on the analysis of published data of tumour samples available in public databases. We performed reverse transcription and quantitative real-time PCR to analyse the plasma levels of selected E2F target transcripts. All four E2F target transcripts were detectable in the plasma of canine tumour patients. CDC6 mRNA levels were significantly higher in the plasma of canine tumour patients compared to healthy controls. A subset of canine tumour patient and healthy control plasma samples (n = 7) were subjected to size exclusion chromatography in order to validate association of the E2F target transcripts to circulating EV. For CDC6, EV analysis enhanced their detectability compared to total plasma analysis. In conclusion, our study reveals circulating CDC6 as a promising non-invasive biomarker to diagnose canine tumours.


Assuntos
Doenças do Cão , Vesículas Extracelulares , Neoplasias , Animais , Biomarcadores Tumorais/metabolismo , Doenças do Cão/diagnóstico , Doenças do Cão/metabolismo , Cães , Biópsia Líquida/métodos , Biópsia Líquida/veterinária , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Front Immunol ; 10: 448, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915085

RESUMO

Extracellular vesicles (EV) that are released by immune cells are studied intensively for their functions in immune regulation and are scrutinized for their potential in human immunotherapy, for example against cancer. In our search for signals that stimulate the release of functional EV by dendritic cells we observed that LPS-activated human monocyte-derived dendritic cells (moDC) changed their morphological characteristics upon contact with non-cognate activated bystander T-cells, while non-activated bystander T-cells had no effect. Exposure to activated bystander T-cells also stimulated the release of EV-associated proteins by moDC, particularly CD63, and ICAM-1, although the extent of stimulation varied between individual donors. Stimulation of moDC with activated bystander T-cells also increased the release of EV-associated miR155, which is a known central modulator of T-cell responses. Functionally, we observed that EV from moDC that were licensed by activated bystander T-cells exhibited a capacity for antigen-specific T-cell activation. Taken together, these results suggest that non-cognatei interactions between DC and bystander T-cells modulates third party antigen-specific T-cell responses via EV.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vesículas Extracelulares/imunologia , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia , Células Cultivadas , Microambiente Celular/imunologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , MicroRNAs/genética , Tetraspanina 30/metabolismo
7.
Nat Biotechnol ; 36(8): 746-757, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010675

RESUMO

RNA-seq is increasingly used for quantitative profiling of small RNAs (for example, microRNAs, piRNAs and snoRNAs) in diverse sample types, including isolated cells, tissues and cell-free biofluids. The accuracy and reproducibility of the currently used small RNA-seq library preparation methods have not been systematically tested. Here we report results obtained by a consortium of nine labs that independently sequenced reference, 'ground truth' samples of synthetic small RNAs and human plasma-derived RNA. We assessed three commercially available library preparation methods that use adapters of defined sequence and six methods using adapters with degenerate bases. Both protocol- and sequence-specific biases were identified, including biases that reduced the ability of small RNA-seq to accurately measure adenosine-to-inosine editing in microRNAs. We found that these biases were mitigated by library preparation methods that incorporate adapters with degenerate bases. MicroRNA relative quantification between samples using small RNA-seq was accurate and reproducible across laboratories and methods.


Assuntos
MicroRNAs/genética , Análise de Sequência de RNA/métodos , Adenosina/genética , Humanos , Inosina/genética , MicroRNAs/sangue , MicroRNAs/normas , Edição de RNA , Padrões de Referência , Reprodutibilidade dos Testes
8.
Cell Mol Life Sci ; 75(20): 3857-3875, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29808415

RESUMO

The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs.


Assuntos
Células Dendríticas/metabolismo , Vesículas Extracelulares/genética , Transcriptoma , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Colecalciferol/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Corantes Fluorescentes/química , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Microscopia Eletrônica , Nanopartículas/química , RNA Nucleolar Pequeno/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/isolamento & purificação , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Análise de Sequência de RNA
9.
Front Immunol ; 9: 3164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697216

RESUMO

The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20-200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.


Assuntos
Ácidos Nucleicos Livres , Vesículas Extracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Pequeno RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Transporte Biológico , Biomarcadores , Comunicação Celular , Exossomos/metabolismo , Vesículas Extracelulares/genética , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA