Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 8(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494220

RESUMO

Recent research has highlighted the importance of key tumor microenvironment features, notably the collagen-rich extracellular matrix (ECM) in characterizing tumor invasion and progression. This led to great interest from both basic researchers and clinicians, including pathologists, to include collagen fiber evaluation as part of the investigation of cancer development and progression. Fibrillar collagen is the most abundant in the normal extracellular matrix, and was revealed to be upregulated in many cancers. Recent studies suggested an emerging theme across multiple cancer types in which specific collagen fiber organization patterns differ between benign and malignant tissue and also appear to be associated with disease stage, prognosis, treatment response, and other clinical features. There is great potential for developing image-based collagen fiber biomarkers for clinical applications, but its adoption in standard clinical practice is dependent on further translational and clinical evaluations. Here, we offer a comprehensive review of the current literature of fibrillar collagen structure and organization as a candidate cancer biomarker, and new perspectives on the challenges and next steps for researchers and clinicians seeking to exploit this information in biomedical research and clinical workflows.

2.
Cancers (Basel) ; 11(5)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117256

RESUMO

Colorectal cancer is the third most common cancer worldwide, and the fourth leading cause of malignancy-related mortality. This highlights the need to understand the processes driving this disease in order to develop new treatments and improve patient outcomes. A potential therapeutic target is the increased stiffness of the tumour microenvironment, which is linked to aggressive cancer cell behaviour by enhancing biomechanical signalling. In this study, we used an siRNA-based approach to investigate the contribution of the protein cross-linking enzyme transglutaminase-2 (TG2) to matrix remodelling and biomechanical properties of the tumour microenvironment. TG2 inhibited cancer cell growth in organotypic 3D fibroblast/SW480 co-culture models, and biomechanical analysis demonstrated that colorectal cancer cells induced fibroblast-mediated stiffness which was inhibited by silencing TG2. These biomechanical changes were associated with observed alterations to collagen fibre structure, notably fibre thickness. Our in vitro findings of collagen composition changes were also seen with imaging biopsied tissues from patients with colorectal cancer, with TG2 correlating positively with thicker collagen fibres, and associating with poor outcome as determined by disease recurrence post-surgery and overall survival. In conclusion, this study demonstrates a role for TG2 in the stromal response to invading tumour, leading to tissue stiffening and poor outcome in patients.

3.
BMC Cancer ; 19(1): 490, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122202

RESUMO

BACKGROUND: The traditional pathologic grading for human renal cell carcinoma (RCC) has low concordance between biopsy and surgical specimen. There is a need to investigate adjunctive pathology technique that does not rely on the nuclear morphology that defines the traditional grading. Changes in collagen organization in the extracellular matrix have been linked to prognosis or grade in breast, ovarian, and pancreatic cancers, but collagen organization has never been correlated with RCC grade. In this study, we used Second Harmonic Generation (SHG) based imaging to quantify possible differences in collagen organization between high and low grades of human RCC. METHODS: A tissue microarray (TMA) was constructed from RCC tumor specimens. Each TMA core represents an individual patient. A 5 µm section from the TMA tissue was stained with standard hematoxylin and eosin (H&E). Bright field images of the H&E stained TMA were used to annotate representative RCC regions. In this study, 70 grade 1 cores and 51 grade 4 cores were imaged on a custom-built forward SHG microscope, and images were analyzed using established software tools to automatically extract and quantify collagen fibers for alignment and density assessment. A linear mixed-effects model with random intercepts to account for the within-patient correlation was created to compare grade 1 vs. grade 4 measurements and the statistical tests were two-sided. RESULTS: Both collagen density and alignment differed significantly between RCC grade 1 and RCC grade 4. Specifically, collagen fiber density was greater in grade 4 than in grade 1 RCC (p < 0.001). Collagen fibers were also more aligned in grade 4 compared to grade 1 (p < 0.001). CONCLUSIONS: Collagen density and alignment were shown to be significantly higher in RCC grade 4 vs. grade 1. This technique of biopsy sampling by SHG could complement classical tumor grading approaches. Furthermore it might allow biopsies to be more clinically relevant by informing diagnostics. Future studies are required to investigate the functional role of collagen organization in RCC.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Colágeno/metabolismo , Neoplasias Renais/diagnóstico por imagem , Gradação de Tumores , Biomarcadores Tumorais/metabolismo , Biópsia , Matriz Extracelular/patologia , Humanos , Rim/patologia , Modelos Lineares , Prognóstico , Microscopia de Geração do Segundo Harmônico , Análise Serial de Tecidos
4.
Methods Mol Biol ; 1627: 429-451, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28836218

RESUMO

Recent evidence has implicated collagen, particularly fibrillar collagen, in a number of diseases ranging from osteogenesis imperfecta and asthma to breast and ovarian cancer. A key property of collagen that has been correlated with disease has been the alignment of collagen fibers. Collagen can be visualized using a variety of imaging techniques including second-harmonic generation (SHG) microscopy, polarized light microscopy, and staining with dyes or antibodies. However, there exists a great need to easily and robustly quantify images from these modalities for individual fibers in specified regions of interest and with respect to relevant boundaries. Most currently available computational tools rely on calculation of pixel-wise orientation or global window-wise orientation that do not directly calculate or give visible fiber-wise information and do not provide relative orientation against boundaries. We describe and detail how to use a freely available, open-source MATLAB software framework that includes two separate but linked packages "CurveAlign" and "CT-FIRE" that can address this need by either directly extracting individual fibers using an improved fiber tracking algorithm or directly finding optimal representation of fiber edges using the curvelet transform. This curvelet-based framework allows the user to measure fiber alignment on a global, region of interest, and fiber basis. Additionally, users can measure fiber angle relative to manually or automatically segmented boundaries. This tool does not require prior experience of programming or image processing and can handle multiple files, enabling efficient quantification of collagen organization from biological datasets.


Assuntos
Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Multimerização Proteica , Processamento de Imagem Assistida por Computador , Microscopia de Polarização , Imagem Molecular , Microscopia de Geração do Segundo Harmônico , Software , Fluxo de Trabalho
5.
Biomed Microdevices ; 18(6): 105, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27819128

RESUMO

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the ability for cancer cells to aggressively infiltrate and navigate through a dense stroma during the metastatic process. Key features of the PDAC stroma include an abundant population of activated pancreatic stellate cells (PSCs) and highly aligned collagen fibers; however, important questions remain regarding how collagen becomes aligned and what the biological manifestations are. To better understand how PSCs, aligned collagen, and PDAC cells might cooperate during the transition to invasion, we utilized a microchannel-based in vitro tumor model and advanced imaging technologies to recreate and examine in vivo-like heterotypic interactions. We found that PSCs participate in a collaborative process with cancer cells by orchestrating the alignment of collagen fibers that, in turn, are permissive to enhanced cell migration. Additionally, direct contact between PSCs, collagen, and PDAC cells is critical to invasion and co-migration of both cell types. This suggests PSCs may accompany and assist in navigating PDAC cells through the stromal terrain. Together, our data provides a new role for PSCs in stimulating the metastatic process and underscores the importance of collagen alignment in cancer progression.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Movimento Celular , Colágeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Fenômenos Biomecânicos , Colágeno/química , Humanos , Dispositivos Lab-On-A-Chip , Invasividade Neoplásica , Peptídeo Hidrolases/metabolismo , Quinases Associadas a rho/metabolismo
6.
Oncotarget ; 7(46): 76197-76213, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27776346

RESUMO

Risk factors for pancreatic ductal adenocarcinoma (PDAC) progression after surgery are unclear, and additional prognostic factors are needed to inform treatment regimens and therapeutic targets. PDAC is characterized by advanced sclerosis of the extracellular matrix, and interactions between cancer cells, fibrillar collagen, and other stromal components play an integral role in progression. Changes in stromal collagen alignment have been shown to modulate cancer cell behavior and have important clinical value in other cancer types, but little is known about its role in PDAC and prognostic value. We hypothesized that the alignment of collagen is associated with PDAC patient survival. To address this, pathology-confirmed tissues from 114 PDAC patients that underwent curative-intent surgery were retrospectively imaged with Second Harmonic Generation (SHG) microscopy, quantified with fiber segmentation algorithms, and correlated to patient survival. The same tissue regions were analyzed for epithelial-to-mesenchymal (EMT), α-SMA, and syndecan-1 using complimentary immunohistostaining and visualization techniques. Significant inter-tumoral variation in collagen alignment was found, and notably high collagen alignment was observed in 12% of the patient cohort. Stratification of patients according to collagen alignment revealed that high alignment is an independent negative factor following PDAC resection (p = 0.0153, multivariate). We also found that epithelial expression of EMT and the stromal expression of α-SMA and syndecan-1 were positively correlated with collagen alignment. In summary, stromal collagen alignment may provide additional, clinically-relevant information about PDAC tumors and underscores the importance of stroma-cancer interactions.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Colágeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Células Estromais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Prognóstico , Células Estromais/patologia , Carga Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
7.
J Histochem Cytochem ; 64(9): 519-29, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27449741

RESUMO

Stromal collagen alignment has been shown to have clinical significance in a variety of cancers and in other diseases accompanied by fibrosis. While much of the biological and clinical importance of collagen changes has been demonstrated using second harmonic generation (SHG) imaging in experimental settings, implementation into routine clinical pathology practice is currently prohibitive. To translate the assessment of collagen organization into routine pathology workflow, a surrogate visualization method needs to be examined. The objective of the present study was to quantitatively compare collagen metrics generated from SHG microscopy and commonly available picrosirius red stain with standard polarization microscopy (PSR-POL). Each technique was quantitatively compared with established image segmentation and fiber tracking algorithms using human pancreatic cancer as a model, which is characterized by a pronounced stroma with reorganized collagen fibers. Importantly, PSR-POL produced similar quantitative trends for most collagen metrics in benign and cancerous tissues as measured by SHG. We found it notable that PSR-POL detects higher fiber counts, alignment, length, straightness, and width compared with SHG imaging but still correlates well with SHG results. PSR-POL may provide sufficient and additional information in a conventional clinical pathology laboratory for certain types of collagen quantification.


Assuntos
Compostos Azo/química , Corantes/química , Colágenos Fibrilares/análise , Neoplasias Pancreáticas/química , Humanos , Microscopia/métodos , Análise Serial de Tecidos
8.
Oncotarget ; 7(5): 6159-74, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26716418

RESUMO

Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-ß treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Neoplasias/metabolismo , Humanos , Neoplasias/patologia , Prognóstico , Taxa de Sobrevida , Microambiente Tumoral
9.
Mod Pathol ; 28(11): 1470-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26336888

RESUMO

Pancreatic ductal adenocarcinoma continues to be one of the most difficult diseases to manage with one of the highest cancer mortality rates. This is due to several factors including nonspecific symptomatology and subsequent diagnosis at an advanced stage, aggressive metastatic behavior that is incompletely understood, and limited response to current therapeutic regimens. As in other cancers, there is great interest in studying the role of the tumor microenvironment in pancreatic ductal adenocarcinoma and whether components of this environment could serve as research and therapeutic targets. In particular, attention has turned toward the desmoplastic collagen-rich pancreatic ductal adenocarcinoma stroma for both biological and clinical insight. In this study, we used quantitative second harmonic generation microscopy to investigate stromal collagen organization and structure in human pancreatic ductal adenocarcinoma pathology tissues compared with non-neoplastic tissues. Collagen topology was characterized in whole-tissue microarray cores and at specific pathology-annotated epithelial-stroma interfaces representing 241 and 117 patients, respectively. We quantitatively demonstrate that a unique collagen topology exists in the periductal pancreatic ductal adenocarcinoma stroma. Specifically, collagen around malignant ducts shows increased alignment, length, and width compared with normal ducts and benign ducts in a chronic pancreatitis background. These findings indicate that second harmonic generation imaging can provide quantitative information about fibrosis that complements traditional histopathologic insights and can serve as a rich field for investigation into pathogenic and clinical implications of reorganized collagen as a pancreatic ductal adenocarcinoma disease marker.


Assuntos
Carcinoma Ductal Pancreático/patologia , Colágeno/ultraestrutura , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/patologia , Microambiente Tumoral , Área Sob a Curva , Humanos , Imuno-Histoquímica , Microscopia Confocal , Curva ROC , Sensibilidade e Especificidade , Análise Serial de Tecidos
10.
Lab Chip ; 13(19): 3965-75, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23959166

RESUMO

Interactions between neoplastic epithelial cells and components of a reactive stroma in pancreatic ductal adenocarcinoma (PDAC) are of key significance behind the disease's dismal prognosis. Despite extensive published research in the importance of stroma-cancer interactions in other cancers and experimental evidence supporting the importance of the microenvironment in PDAC progression, a reproducible three-dimensional (3D) in vitro model for exploring stroma-cancer interplay and evaluating therapeutics in a physiologically relevant context has been lacking. We introduce a humanized microfluidic model of the PDAC microenvironment incorporating multicellularity, extracellular matrix (ECM) components, and a spatially defined 3D microarchitecture. Pancreatic stellate cells (PSCs) isolated from clinically-evaluated human tissue specimens were co-cultured with pancreatic ductal adenocarcinoma cells as an accessible 3D construct that maintained important tissue features and disease behavior. Multiphoton excitation (MPE) and Second Harmonic Generation (SHG) imaging techniques were utilized to image the intrinsic signal of stromal collagen in human pancreatic tissues and live cell-collagen interactions within the optically-accessible microfluidic tissue model. We further evaluated the dose-response of the model with the anticancer agent paclitaxel. This bioengineered model of the PDAC stroma-cancer microenvironment provides a complementary platform to elucidate the complex stroma-cancer interrelationship and to evaluate the efficacy of potential therapeutics in a humanized system that closely recapitulates key PDAC microenvironment characteristics.


Assuntos
Bioengenharia , Carcinoma Ductal Pancreático/patologia , Técnicas Analíticas Microfluídicas/métodos , Neoplasias Pancreáticas/patologia , Células Estromais/patologia , Microambiente Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Imagem Molecular , Paclitaxel/farmacologia , Reprodutibilidade dos Testes , Células Estromais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA