Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7844, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057317

RESUMO

Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Polimerização , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Transdução de Sinais/fisiologia
2.
Cell Rep ; 42(6): 112562, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245210

RESUMO

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Assuntos
Neoplasias da Mama , Formiatos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Neoplasias da Mama/metabolismo , Formiatos/metabolismo , Metionina , NADP , Espécies Reativas de Oxigênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
3.
Nat Commun ; 12(1): 6176, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702840

RESUMO

Serine is a non-essential amino acid that is critical for tumour proliferation and depletion of circulating serine results in reduced tumour growth and increased survival in various cancer models. While many cancer cells cultured in a standard tissue culture medium depend on exogenous serine for optimal growth, here we report that these cells are less sensitive to serine/glycine depletion in medium containing physiological levels of metabolites. The lower requirement for exogenous serine under these culture conditions reflects both increased de novo serine synthesis and the use of hypoxanthine (not present in the standard medium) to support purine synthesis. Limiting serine availability leads to increased uptake of extracellular hypoxanthine, sparing available serine for other pathways such as glutathione synthesis. Taken together these results improve our understanding of serine metabolism in physiologically relevant nutrient conditions and allow us to predict interventions that may enhance the therapeutic response to dietary serine/glycine limitation.


Assuntos
Neoplasias/metabolismo , Serina/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Proliferação de Células , Meios de Cultura/química , Meios de Cultura/metabolismo , Glicina/análise , Glicina/metabolismo , Humanos , Hipoxantina/análise , Hipoxantina/metabolismo , Neoplasias/dietoterapia , Neoplasias/patologia , Purinas/biossíntese , Serina/análise , Regulação para Cima
4.
Nat Metab ; 2(4): 335-350, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694609

RESUMO

Plasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes.


Assuntos
Neoplasias Hepáticas/metabolismo , Animais , Proliferação de Células , Glucose/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutamina/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Proto-Oncogênicas c-myc/metabolismo
5.
Nat Chem Biol ; 14(11): 1032-1042, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297875

RESUMO

α-Ketoglutarate (αKG) is a key node in many important metabolic pathways. The αKG analog N-oxalylglycine (NOG) and its cell-permeable prodrug dimethyloxalylglycine (DMOG) are extensively used to inhibit αKG-dependent dioxygenases. However, whether NOG interference with other αKG-dependent processes contributes to its mode of action remains poorly understood. Here we show that, in aqueous solutions, DMOG is rapidly hydrolyzed, yielding methyloxalylglycine (MOG). MOG elicits cytotoxicity in a manner that depends on its transport by monocarboxylate transporter 2 (MCT2) and is associated with decreased glutamine-derived tricarboxylic acid-cycle flux, suppressed mitochondrial respiration and decreased ATP production. MCT2-facilitated entry of MOG into cells leads to sufficiently high concentrations of NOG to inhibit multiple enzymes in glutamine metabolism, including glutamate dehydrogenase. These findings reveal that MCT2 dictates the mode of action of NOG by determining its intracellular concentration and have important implications for the use of (D)MOG in studying αKG-dependent signaling and metabolism.


Assuntos
Aminoácidos Dicarboxílicos/química , Ácidos Cetoglutáricos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Trifosfato de Adenosina/química , Animais , Fenômenos Bioquímicos , Bovinos , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Hidrólise , Concentração Inibidora 50 , Células MCF-7 , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Oxigênio/química , Puromicina/química , Transdução de Sinais , Ácidos Tricarboxílicos/química
6.
Biophys J ; 115(1): 31-45, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972810

RESUMO

Phosphatidylinositol phospholipase Cγ (PLCγ) is an intracellular membrane-associated second-messenger signaling protein activated by tyrosine kinases such as fibroblast growth factor receptor 1. PLCγ contains the regulatory γ-specific array (γSA) comprising a tandem Src homology 2 (SH2) pair, an SH3 domain, and a split pleckstrin homology domain. Binding of an activated growth factor receptor to γSA leads to Tyr783 phosphorylation and consequent PLCγ activation. Several disease-relevant mutations in γSA have been identified; all lead to elevated phospholipase activity. In this work, we describe an allosteric mechanism that connects the Tyr783 phosphorylation site to the nSH2-cSH2 junction and involves dynamic interactions between the cSH2-SH3 linker and cSH2. Molecular dynamics simulations of the tandem SH2 protein suggest that Tyr783 phosphorylation is communicated to the nSH2-cSH2 junction by modulating cSH2 binding to sections of the cSH2-SH3 linker. NMR chemical shift perturbation analyses for designed tandem SH2 constructs reveal combined fast and slow dynamic processes that can be attributed to allosteric communication involving these regions of the protein, establishing an example in which complex N-site exchange can be directly inferred from 1H,15N-HSQC spectra. Furthermore, in tandem SH2 and γSA constructs, molecular dynamics and NMR results show that the Arg687Trp mutant in PLCγ1 (equivalent to the cancer mutation Arg665Trp in PLCγ2) perturbs the dynamic allosteric pathway. This combined experimental and computational study reveals a rare example of multistate kinetics involved in a dynamic allosteric process that is modulated in the context of a disease-relevant mutation. The allosteric influences and the weakened binding of the cSH2-SH3 linker to cSH2 should be taken into account in any more holistic investigation of PLCγ regulation.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Neoplasias/genética , Ressonância Magnética Nuclear Biomolecular , Fosfolipase C gama/química , Fosfolipase C gama/metabolismo , Regulação Alostérica , Fosfolipase C gama/genética , Fosforilação , Domínios de Homologia de src
7.
FEBS J ; 284(18): 2955-2980, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28715126

RESUMO

Changes in allosteric regulation of glycolytic enzymes have been linked to metabolic reprogramming involved in cancer. Remarkably, allosteric mechanisms control enzyme function at significantly shorter time-scales compared to the long-term effects of metabolic reprogramming on cell proliferation. It remains unclear if and how the speed and reversibility afforded by rapid allosteric control of metabolic enzymes is important for cell proliferation. Tools that allow specific, dynamic modulation of enzymatic activities in mammalian cells would help address this question. Towards this goal, we have used molecular dynamics simulations to guide the design of mPKM2 internal light/oxygen/voltage-sensitive domain 2 (LOV2) fusion at position D24 (PiL[D24]), an engineered pyruvate kinase M2 (PKM2) variant that harbours an insertion of the light-sensing LOV2 domain from Avena Sativa within a region implicated in allosteric regulation by fructose 1,6-bisphosphate (FBP). The LOV2 photoreaction is preserved in the PiL[D24] chimera and causes secondary structure changes that are associated with a 30% decrease in the Km of the enzyme for phosphoenolpyruvate resulting in increased pyruvate kinase activity after light exposure. Importantly, this change in activity is reversible upon light withdrawal. Expression of PiL[D24] in cells leads to light-induced increase in labelling of pyruvate from glucose. PiL[D24] therefore could provide a means to modulate cellular glucose metabolism in a remote manner and paves the way for studying the importance of rapid allosteric phenomena in the regulation of metabolism and enzyme control.


Assuntos
Apoproteínas/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Frutosedifosfatos/química , Proteínas de Membrana/química , Proteínas de Plantas/química , Proteínas Recombinantes de Fusão/química , Hormônios Tireóideos/química , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Avena/química , Avena/genética , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Frutosedifosfatos/metabolismo , Expressão Gênica , Humanos , Cinética , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Especificidade por Substrato , Termodinâmica , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
8.
Cancer Res ; 77(16): 4355-4364, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28630053

RESUMO

Different pyruvate kinase isoforms are expressed in a tissue-specific manner, with pyruvate kinase M2 (PKM2) suggested to be the predominant isoform in proliferating cells and cancer cells. Because of differential regulation of enzymatic activities, PKM2, but not PKM1, has been thought to favor cell proliferation. However, the role of PKM2 in tumorigenesis has been recently challenged. Here we report that increased glucose catabolism through glycolysis and increased pyruvate kinase activity in c-MYC-driven liver tumors are associated with increased expression of both PKM1 and PKM2 isoforms and decreased expression of the liver-specific isoform of pyruvate kinase, PKL. Depletion of PKM2 at the time of c-MYC overexpression in murine livers did not affect c-MYC-induced tumorigenesis and resulted in liver tumor formation with decreased pyruvate kinase activity and decreased catabolism of glucose into alanine and the Krebs cycle. An increased PKM1/PKM2 ratio by ectopic PKM1 expression further decreased glucose flux into serine biosynthesis and increased flux into lactate and the Krebs cycle, resulting in reduced total levels of serine. However, these changes also did not affect c-MYC-induced liver tumor development. These results suggest that increased expression of PKM2 is not required to support c-MYC-induced tumorigenesis in the liver and that various PKM1/PKM2 ratios and pyruvate kinase activities can sustain glucose catabolism required for this process. Cancer Res; 77(16); 4355-64. ©2017 AACR.


Assuntos
Glucose/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piruvato Quinase/metabolismo , Animais , Genes myc , Isoenzimas , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-myc/genética , Piruvato Quinase/genética
9.
PLoS One ; 11(4): e0154176, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100463

RESUMO

Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.


Assuntos
Proteínas de Anfíbios/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/metabolismo , Salamandridae/metabolismo , Sequência de Aminoácidos , Proteínas de Anfíbios/classificação , Proteínas de Anfíbios/genética , Animais , Western Blotting , Células COS , Proteínas de Transporte/genética , Proliferação de Células/genética , Células Cultivadas , Chlorocebus aethiops , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Humanos , Mutação , Filogenia , Ligação Proteica , Fase S/genética , Fase S/fisiologia , Salamandridae/genética , Homologia de Sequência de Aminoácidos
10.
Methods Enzymol ; 545: 201-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25065892

RESUMO

This chapter describes reports of the structural characterization of death ligands and death receptors (DRs) from the tumor necrosis factor (TNF) and TNF receptor families. The review discusses the interactions of these proteins with agonist ligands, inhibitors, and downstream signaling molecules. Though historically labeled as being implicated in programmed cell death, the function of these proteins extends to nonapoptotic pathways. The review highlights, from a structural biology perspective, the complexity of DR signaling and the ongoing challenge to discern the precise mechanisms that occur at the point of DR activation, including how the degree to which the receptors are induced to cluster may be related to the nature of the impact upon the cell. The potential for posttranslational modification and receptor internalization to play roles in DR signaling is briefly discussed.


Assuntos
Apoptose/genética , Receptores de Morte Celular/química , Transdução de Sinais , Fator de Necrose Tumoral alfa/química , Cristalografia por Raios X , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Proteica , Processamento de Proteína Pós-Traducional/genética , Receptores de Morte Celular/metabolismo
11.
Drug Discov Today ; 18(9-10): 447-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23228652

RESUMO

The blockade of tumour vascularisation and angiogenesis continues to be a focus for drug development in oncology and other pathologies. Historically, targeting vascular endothelial growth factor (VEGF) activity and its association with VEGF receptors (VEGFRs) has represented the most promising line of attack. More recently, the recognition that VEGFR co-receptors, neuropilin-1 and -2 (NRP1 and NRP2), are also engaged by specific VEGF isoforms in tandem with the VEGFRs has expanded the landscape for the development of modulators of VEGF-dependent signalling. Here, we review the recent structural characterisation of VEGF interactions with NRP subdomains and the impact this has had on drug development activity in this area.


Assuntos
Neuropilinas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Neovascularização Patológica/metabolismo , Neuropilinas/química , Conformação Proteica
12.
Cell ; 146(3): 435-47, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816278

RESUMO

Developing animals survive periods of starvation by protecting the growth of critical organs at the expense of other tissues. Here, we use Drosophila to explore the as yet unknown mechanisms regulating this privileged tissue growth. As in mammals, we observe in Drosophila that the CNS is more highly spared than other tissues during nutrient restriction (NR). We demonstrate that anaplastic lymphoma kinase (Alk) efficiently protects neural progenitor (neuroblast) growth against reductions in amino acids and insulin-like peptides during NR via two mechanisms. First, Alk suppresses the growth requirement for amino acid sensing via Slimfast/Rheb/TOR complex 1. And second, Alk, rather than insulin-like receptor, primarily activates PI3-kinase. Alk maintains PI3-kinase signaling during NR as its ligand, Jelly belly (Jeb), is constitutively expressed from a glial cell niche surrounding neuroblasts. Together, these findings identify a brain-sparing mechanism that shares some regulatory features with the starvation-resistant growth programs of mammalian tumors.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Privação de Alimentos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poliploidia
13.
Structure ; 18(10): 1378-90, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20947025

RESUMO

We have addressed complex formation between the death domain (DD) of the death receptor CD95 (Fas/APO-1) with the DD of immediate adaptor protein FADD using nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and size-exclusion chromatography with in-line light scattering. We find complexation to be independent of the C-terminal 12 residues of CD95 and insensitive to mutation of residues that engage in the high-order clustering of CD95-DD molecules in a recently reported crystal structure obtained at pH 4. Differential NMR linewidths indicate that the C-terminal region of the CD95 chains remains in a disordered state and (13)C-methyl TROSY data are consistent with a lack of high degree of symmetry for the complex. The overall molecular mass of the complex is inconsistent with that in the crystal structure, and the complex dissociates at pH 4. We discuss these findings using sequence analysis of CD95 orthologs and the effect of FADD mutations on the interaction with CD95.


Assuntos
Proteína de Domínio de Morte Associada a Fas/química , Espectroscopia de Ressonância Magnética/métodos , Estrutura Terciária de Proteína , Receptor fas/química , Sequência de Aminoácidos , Isótopos de Carbono , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Isótopos de Nitrogênio , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Soluções , Receptor fas/genética , Receptor fas/metabolismo
14.
J Med Chem ; 53(5): 2215-26, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20151671

RESUMO

We report the molecular design and synthesis of EG00229, 2, the first small molecule ligand for the VEGF-A receptor neuropilin 1 (NRP1) and the structural characterization of NRP1-ligand complexes by NMR spectroscopy and X-ray crystallography. Mutagenesis studies localized VEGF-A binding in the NRP1 b1 domain and a peptide fragment of VEGF-A was shown to bind at the same site by NMR, providing the basis for small molecule design. Compound 2 demonstrated inhibition of VEGF-A binding to NRP1 and attenuated VEGFR2 phosphorylation in endothelial cells. Inhibition of migration of endothelial cells was also observed. The viability of A549 lung carcinoma cells was reduced by 2, and it increased the potency of the cytotoxic agents paclitaxel and 5-fluorouracil when given in combination. These studies provide the basis for design of specific small molecule inhibitors of ligand binding to NRP1.


Assuntos
Antineoplásicos/síntese química , Neuropilina-1/fisiologia , Fragmentos de Peptídeos/síntese química , Fator A de Crescimento do Endotélio Vascular/fisiologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/ultraestrutura , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/ultraestrutura , Fosforilação , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/ultraestrutura
15.
Biochem J ; 425(3): 513-22, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19886864

RESUMO

Current drug therapies against Trypanosoma cruzi, the causative agent of Chagas disease, have limited effectiveness and are highly toxic. T. cruzi-specific metabolic pathways that utilize trypanothione for the reduction of peroxides are being explored as potential novel therapeutic targets. In the present study we solved the X-ray crystal structure of one of the T. cruzi enzymes involved in peroxide reduction, the glutathione peroxidase-like enzyme TcGPXI (T. cruzi glutathione peroxidase-like enzyme I). We also characterized the wild-type, C48G and C96G variants of TcGPXI by NMR spectroscopy and biochemical assays. Our results show that residues Cys48 and Cys96 are required for catalytic activity. In solution, the TcGPXI molecule readily forms a Cys48-Cys96 disulfide bridge and the polypeptide segment containing Cys96 lacks regular secondary structure. NMR spectra of the reduced TcGPXI are indicative of a protein that undergoes widespread conformational exchange on an intermediate time scale. Despite the absence of the disulfide bond, the active site mutant proteins acquired an oxidized-like conformation as judged from their NMR spectra. The protein that was used for crystallization was pre-oxidized by t-butyl hydroperoxide; however, the electron density maps clearly showed that the active site cysteine residues are in the reduced thiol form, indicative of X-ray-induced reduction. Our crystallographic and solution studies suggest a level of structural plasticity in TcGPXI consistent with the requirement of the atypical two-cysteine (2-Cys) peroxiredoxin-like mechanism implied by the behaviour of the Cys48 and Cys96 mutant proteins.


Assuntos
Glutationa Peroxidase/química , Trypanosoma cruzi/metabolismo , Animais , Catálise , Domínio Catalítico , Cisteína/química , Dissulfetos/química , Cinética , Espectroscopia de Ressonância Magnética , Mutação , Peróxidos/química , Reação em Cadeia da Polimerase , Conformação Proteica , Dobramento de Proteína , Interferência de RNA
16.
J Biol Chem ; 283(44): 30351-62, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18728011

RESUMO

Several isoforms of phospholipase C (PLC) are regulated through interactions with Ras superfamily GTPases, including Rac proteins. Interestingly, of two closely related PLCgamma isoforms, only PLCgamma(2) has previously been shown to be activated by Rac. Here, we explore the molecular basis of this interaction as well as the structural properties of PLCgamma(2) required for activation. Based on reconstitution experiments with isolated PLCgamma variants and Rac2, we show that an unusual pleckstrin homology (PH) domain, designated as the split PH domain (spPH), is both necessary and sufficient to effect activation of PLCgamma(2) by Rac2. We also demonstrate that Rac2 directly binds to PLCgamma(2) as well as to the isolated spPH of this isoform. Furthermore, through the use of NMR spectroscopy and mutational analysis, we determine the structure of spPH, define the structural features of spPH required for Rac interaction, and identify critical amino acid residues at the interaction interface. We further discuss parallels and differences between PLCgamma(1) and PLCgamma(2) and the implications of our findings for their respective signaling roles.


Assuntos
Proteínas Sanguíneas/química , Regulação Enzimológica da Expressão Gênica , Fosfolipase C gama/metabolismo , Fosfoproteínas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais
17.
J Mol Biol ; 378(1): 129-44, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18339402

RESUMO

The lymphocyte receptor CD5 influences cell activation by modifying the strength of the intracellular response initiated by antigen engagement. Regulation through CD5 involves the interaction of one or more of its three scavenger receptor cysteine-rich domains present in the extracellular region. Here, we present the 3D solution structure of a non-glycosylated double mutant of the N-terminal domain of human CD5 expressed in Escherichia coli (eCD5d1m), which has enhanced solubility compared to the non-glycosylated wild-type (eCD5d1). In common with a glycosylated form expressed in Pichia pastoris, the [(15)N,(1)H]-correlation spectra of both eCD5d1 and eCD5d1m exhibit non-uniform temperature-dependent signal intensities, indicating extensive conformational fluctuations on the micro-millisecond timescale. Although approximately one half of the signals expected for the domain are absent at 298 K, essentially complete resonance assignments and a solution structure could be obtained at 318 K. Because of the sparse nature of the experimental restraint data and the potentially important contribution of conformational exchange to the nuclear Overhauser effect peak intensity, we applied inferential structure determination to calculate the eCD5d1m structure. The inferential structure determination ensemble has similar features to that obtained by traditional simulated annealing methods, but displays superior definition and structural quality. The eCD5d1m structure is similar to other members of the scavenger receptor cysteine-rich superfamily, but the position of the lone alpha helix differs due to interactions with the unique N-terminal region of the domain. The availability of an experimentally tractable form of CD5d1, together with its 3D structure, provides new tools for further investigation of its function within intact CD5.


Assuntos
Antígenos CD5/química , Cisteína/química , Receptores Depuradores/química , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antígenos CD5/genética , Antígenos CD5/imunologia , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Pichia/genética , Estrutura Terciária de Proteína/genética , Receptores Depuradores/genética , Receptores Depuradores/imunologia , Solubilidade , Soluções , Temperatura
18.
BMC Struct Biol ; 8: 13, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18312637

RESUMO

BACKGROUND: PX domains have specialized protein structures involved in binding of phosphoinositides (PIs). Through binding to the various PIs PX domains provide site-specific membrane signals to modulate the intracellular localisation and biological activity of effector proteins. Several crystal structures of these domains are now available from a variety of proteins. All PX domains contain a canonical core structure with main differences exhibited within the loop regions forming the phosphoinositide binding pockets. It is within these areas that the molecular basis for ligand specificity originates. RESULTS: We now report two new structures of PI3K-C2alpha PX domain that crystallised in a P3121 space group. The two structures, refined to 2.1 A and 2.5 A, exhibit significantly different conformations of the phosphoinositide-binding loops. Unexpectedly, in one of the structures, we have detected a putative-ligand trapped in the binding site during the process of protein purification and crystallisation. CONCLUSION: The two structures reported here provide a more complete description of the phosphoinositide binding region compared to the previously reported 2.6 A crystal structure of human PI3K-C2alpha PX where this region was highly disordered. The structures enabled us to further analyse PI specificity and to postulate that the observed conformational change could be related to ligand-binding.


Assuntos
Fosfatidilinositol 3-Quinases/química , Conformação Proteica , Estrutura Terciária de Proteína , Sítios de Ligação , Classe II de Fosfatidilinositol 3-Quinases , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
19.
Drug Discov Today ; 12(21-22): 931-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17993411

RESUMO

In addressing a new drug discovery target, the generation of tractable protein substrates for functional and structural analyses can represent a significant hurdle. Traditional approaches rely on protein expression trials of multiple variants in various systems, frequently with limited success. The increasing knowledge base derived from genomics and structural proteomics initiatives assists the bioinformatics-led design of these experiments. Nevertheless, for many eukaryotic polypeptides, particularly those with relatively few homologues, the generation of useful protein products can still be a major challenge. This review describes the basis of efforts to forge an alternative 'domain-hunting' paradigm, based upon combinatorial sampling of expression construct libraries derived by fragmentation of the encoding DNA template, namely the methods and considerations in generating fragment length DNA from target genes. An accompanying review focuses upon the expression screening of such combinatorial DNA libraries for the sampling of the corresponding set of protein fragments.


Assuntos
Técnicas de Química Combinatória/métodos , Fragmentação do DNA , Biblioteca Gênica , Proteínas/química , Desenho de Fármacos , Reação em Cadeia da Polimerase
20.
Biomol NMR Assign ; 1(1): 51-3, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19636824

RESUMO

To facilitate NMR spectroscopy studies of interactions with various ligands and potential inhibitors, we report the NMR backbone resonance assignments for the 26 kD human enzyme UCH-L3, a member of the ubiquitin C-hydrolase family of ubiquitin-specific cysteine proteases.


Assuntos
Cisteína Endopeptidases/química , Domínio Catalítico , Cisteína Endopeptidases/genética , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ubiquitina Tiolesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA