Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893185

RESUMO

The disialoganglioside, GD2, is a promising therapeutic target due to its overexpression in certain tumors, particularly neuroblastoma (NB), with limited expression in normal tissues. Despite progress, the intricate mechanisms of action and the full spectrum of the direct cellular responses to anti-GD2 antibodies remain incompletely understood. In this study, we examined the direct cytotoxic effects of the humanized anti-GD2 antibody hu14.18K322A (hu14) on NB cell lines, by exploring the associated cell-death pathways. Additionally, we assessed the synergy between hu14 and conventional induction chemotherapy drugs. Our results revealed that hu14 treatment induced direct cytotoxic effects in CHLA15 and SK-N-BE1 cell lines, with a pronounced impact on proliferation and colony formation. Apoptosis emerged as the predominant cell-death pathway triggered by hu14. Furthermore, we saw a reduction in GD2 surface expression in response to hu14 treatment. Hu14 demonstrated synergy with induction chemotherapy drugs with alterations in GD2 expression. Our comprehensive investigation provides valuable insights into the multifaceted effects of hu14 on NB cells, shedding light on its direct cytotoxicity, cell-death pathways, and interactions with induction chemotherapy drugs. This study contributes to the evolving understanding of anti-GD2 antibody therapy and its potential synergies with conventional treatments in the context of NB.

2.
J Pathol ; 262(2): 212-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984408

RESUMO

Despite evidence of genetic signatures in normal tissue correlating with disease risk, prospectively identifying genetic drivers and cell types that underlie subsequent pathologies has historically been challenging. The human prostate is an ideal model to investigate this phenomenon because it is anatomically segregated into three glandular zones (central, peripheral, and transition) that develop differential pathologies: prostate cancer in the peripheral zone (PZ) and benign prostatic hyperplasia (BPH) in the transition zone (TZ), with the central zone (CZ) rarely developing disease. More specifically, prostatic basal cells have been implicated in differentiation and proliferation during prostate development and regeneration; however, the contribution of zonal variation and the critical role of basal cells in prostatic disease etiology are not well understood. Using single-cell RNA sequencing of primary prostate epithelial cultures, we elucidated organ-specific, zone-specific, and cluster-specific gene expression differences in basal cells isolated from human prostate and seminal vesicle (SV). Aggregated analysis identified ten distinct basal clusters by Uniform Manifold Approximation and Projection. Organ specificity compared gene expression in SV with the prostate. As expected, SV cells were distinct from prostate cells by clustering, gene expression, and pathway analysis. For prostate zone specificity, we identified two CZ-specific clusters, while the TZ and PZ populations clustered together. Despite these similarities, differential gene expression was identified between PZ and TZ samples that correlated with gene expression profiles in prostate cancer and BPH, respectively. Zone-specific profiles and cell type-specific markers were validated using immunostaining and bioinformatic analyses of publicly available RNA-seq datasets. Understanding the baseline differences at the organ, zonal, and cellular level provides important insight into the potential drivers of prostatic disease and guides the investigation of novel preventive or curative treatments. Importantly, this study identifies multiple prostate basal cell populations and cell type-specific gene signatures within prostate basal epithelial cells that have potential critical roles in driving prostatic diseases. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Transcriptoma , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Células Epiteliais/patologia , Análise de Sequência de RNA
3.
EMBO Rep ; 24(3): e54228, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36633157

RESUMO

Estrogen is a disease-modifying factor in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) via estrogen receptor alpha (ERα). However, the mechanisms by which ERα signaling contributes to changes in disease pathogenesis have not been completely elucidated. Here, we demonstrate that ERα deletion in dendritic cells (DCs) of mice induces severe neurodegeneration in the central nervous system in a mouse EAE model and resistance to interferon beta (IFNß), a first-line MS treatment. Estrogen synthesized by extragonadal sources is crucial for controlling disease phenotypes. Mechanistically, activated ERα directly interacts with TRAF3, a TLR4 downstream signaling molecule, to degrade TRAF3 via ubiquitination, resulting in reduced IRF3 nuclear translocation and transcription of membrane lymphotoxin (mLT) and IFNß components. Diminished ERα signaling in DCs generates neurotoxic effector CD4+ T cells via mLT-lymphotoxin beta receptor (LTßR) signaling. Lymphotoxin beta receptor antagonist abolished EAE disease symptoms in the DC-specific ERα-deficient mice. These findings indicate that estrogen derived from extragonadal sources, such as lymph nodes, controls TRAF3-mediated cytokine production in DCs to modulate the EAE disease phenotype.


Assuntos
Encefalomielite Autoimune Experimental , Receptor alfa de Estrogênio , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Estrogênios/farmacologia , Fenótipo , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BL
4.
Hum Reprod ; 37(12): 2885-2898, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36303457

RESUMO

STUDY QUESTION: Does basigin (BSG) regulate human endometrial stromal cell (HESC) decidualization in vitro? SUMMARY ANSWER: BSG regulates HESCs proliferation and decidualization. WHAT IS KNOWN ALREADY: Studies have shown that in the human endometrium, BSG expression is menstrual-cycle dependent and its expression was significantly lower in uterine endometrium during the luteal phase of women experiencing multiple implantation failures after IVF than in women with normal fertility. STUDY DESIGN, SIZE, DURATION: We utilized a telomerase-immortalized HESCs in an in vitro cell culture model system to investigate whether BSG regulates decidualization of stromal cells. Further, we used microarray analysis to identify changes in the gene expression profile of HESCs treated with BSG small interfering RNA (siRNA). All experiments were repeated at least three times. PARTICIPANTS/MATERIALS, SETTING, METHODS: The effect of BSG knockdown (using siRNA) on HESC proliferation was determined by counting cell number and by tritiated thymidine incorporation assays. The effect of BSG on decidualization of HESCs was determined by RT-qPCR for the decidualization markers insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL). Immunoblotting was used to determine the effect of BSG siRNA on the expression of MMP-2,3. Microarray analysis was used to identify BSG-regulated genes in HESCs at Day 6 of decidualization. Functional and pathway enrichment analyses were then carried out on the differentially expressed genes (DEGs). The STRING online database was used to analyze protein-protein interaction (PPI) between DEG-encoded proteins, and CytoScape software was used to visualize the interaction. MCODE and CytoHubba were used to construct functional modules and screen hub genes separately. Several BSG-regulated genes identified in the microarray analysis were confirmed by qPCR. MAIN RESULTS AND THE ROLE OF CHANCE: Knockdown of BSG expression in cultured stromal cells by siRNA significantly (P < 0.05) inhibited HESC proliferation, disrupted cell decidualization and down-regulated MMP-2 and MMP-3 expression. Microarray analysis identified 721 genes that were down-regulated, and 484 genes up-regulated with P < 0.05 in BSG siRNA treated HESCs. GO term enrichment analysis showed that the DEGs were significantly enriched in cell communication, signaling transduction and regulation, response to stimulus, cell adhesion, anatomical structure morphogenesis, extracellular matrix organization, as well as other functional pathways. KEGG pathway analysis identified upregulated gene enriched in pathways such as the MAPK signaling pathway, colorectal cancer, melanoma and axon guidance. In contrast, downregulated genes were mainly enriched in pathways including ECM-receptor interaction, PI3K-Akt signaling pathway, pathways in cancer, antigen processing, type I diabetes mellitus and focal adhesion. The top 10 hub nodes were identified using 12 methods analyses. The hub genes that showed up in two methods were screened out. Among these genes, upregulated genes included EGFR, HSP90AA1, CCND1, PXN, PRKACB, MGAT4A, EVA1A, LGALS1, STC2, HSPA4; downregulated genes included WNT4/5, FOXO1, CDK1, PIK3R1, IGF1, JAK2, LAMB1, ITGAV, HGF, MXRA8, TMEM132A, UBE2C, QSOX1, ERBB2, GNB4, HSP90B1, LAMB2, LAMC1 and ITGA1. Hub genes and module genes involved in the top three modules of PPI analysis were analyzed through the string database. Analysis showed that hub and module genes were related mainly to the WNT signaling pathway, PI3K-AKT signaling pathway and pathways in cancer. LARGE SCALE DATA: The microarray data set generated in this study has been published online at databank.illinois.edu. LIMITATIONS, REASONS FOR CAUTION: Most of the findings were obtained using an in vitro cell culture system that may not necessarily reflect in vivo functions. WIDER IMPLICATIONS OF THE FINDINGS: Our results demonstrate that BSG plays a vital role in decidualization and that downregulation of BSG in the uterine endometrium may be associated with infertility in women. The identified hub genes and pathways increase our understanding of the genetic etiology and molecular mechanisms underlying the regulation of decidualization by BSG. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the NIH U54 HD40093 (R.A.N.). The authors have no competing interests to declare.


Assuntos
Basigina , Metaloproteinase 2 da Matriz , Feminino , Humanos , Basigina/metabolismo , Endométrio/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Células Estromais/metabolismo
5.
J Environ Sci (China) ; 117: 46-57, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725088

RESUMO

Iodoacetic acid (IAA) is an unregulated water disinfection byproduct that is an ovarian toxicant. However, the mechanisms of action underlying IAA toxicity in ovarian follicles remain unclear. Thus, we determined whether IAA alters gene expression in ovarian follicles in mice. Adult female mice were dosed with water or IAA (10 or 500 mg/L) in the water for 35-40 days. Antral follicles were collected for RNA-sequencing analysis and sera were collected to measure estradiol. RNA-sequencing analysis identified 1063 differentially expressed genes (DEGs) in the 10 and 500 mg/L IAA groups (false discovery rate FDR < 0.1), respectively, compared to controls. Gene Ontology Enrichment analysis showed that DEGs were involved with RNA processing and regulation of angiogenesis (10 mg/L) and the cell cycle and cell division (500 mg/L). Pathway Enrichment analysis showed that DEGs were involved in the phosphatidylinositol 3-kinase and protein kinase B (PI3K-Akt), gonadotropin-releasing hormone (GnRH), estrogen, and insulin signaling pathways (10 mg/L). Pathway Enrichment analysis showed that DEGs were involved in the oocyte meiosis, GnRH, and oxytocin signaling pathways (500 mg/L). RNA-sequencing analysis identified 809 DEGs when comparing the 500 and 10 mg/L IAA groups (FDR < 0.1). DEGs were related to ribosome, translation, mRNA processing, oxidative phosphorylation, chromosome, cell cycle, cell division, protein folding, and the oxytocin signaling pathway. Moreover, IAA exposure significantly decreased estradiol levels (500 mg/L) compared to control. This study identified key candidate genes and pathways involved in IAA toxicity and can help to further understand the molecular mechanisms of IAA toxicity in ovarian follicles.


Assuntos
Fosfatidilinositol 3-Quinases , Transcriptoma , Animais , Estradiol , Feminino , Hormônio Liberador de Gonadotropina , Ácido Iodoacético/toxicidade , Camundongos , Ocitocina , RNA , Água
6.
Mol Cancer Res ; 20(6): 923-937, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259269

RESUMO

Estrogen receptor-positive (ER+) metastatic tumors contribute to nearly 70% of breast cancer-related deaths. Most patients with ER+ metastatic breast cancer (MBC) undergo treatment with the estrogen receptor antagonist fulvestrant as standard of care. Yet, among such patients, metastasis in liver is associated with reduced overall survival compared with other metastasis sites. The factors underlying the reduced responsiveness of liver metastases to ER-targeting agents remain unknown, impeding the development of more effective treatment approaches to improve outcomes for patients with ER+ liver metastases. We therefore evaluated site-specific changes in MBC cells and determined the mechanisms through which the liver metastatic niche specifically influences ER+ tumor metabolism and drug resistance. We characterized ER activity of MBC cells both in vitro, using a novel system of tissue-specific extracellular matrix hydrogels representing the stroma of ER+ tumor metastatic sites (liver, lung, and bone), and in vivo, in liver and lung metastasis mouse models. ER+ metastatic liver tumors and MBC cells grown in liver hydrogels displayed upregulated expression of glucose metabolism enzymes in response to fulvestrant. Furthermore, differential ERα activity, but not expression, was detected in liver hydrogels. In vivo, increased glucose metabolism led to increased glycogen deposition in liver metastatic tumors, while a fasting-mimicking diet increased efficacy of fulvestrant treatment to reduce the metastatic burden. Our findings identify a novel mechanism of endocrine resistance driven by the liver tumor microenvironment. IMPLICATIONS: These results may guide the development of dietary strategies to circumvent drug resistance in liver metastasis, with potential applicability in other metastatic diseases.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Animais , Neoplasias da Mama/patologia , Dieta , Feminino , Fulvestranto/efeitos adversos , Glucose , Humanos , Hidrogéis/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Receptores de Estrogênio/metabolismo , Microambiente Tumoral
7.
Theor Appl Genet ; 133(1): 87-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31570969

RESUMO

KEY MESSAGE: Root transcriptome profiling of three soybean cultivars and a wild relative infected with soybean cyst nematode at migratory phase revealed differential resistance pathway responses between resistant and susceptible genotypes. The soybean cyst nematode (SCN), Heterodera glycines, is the most serious pathogen of soybean production throughout the world. Using resistant cultivars is the primary management strategy against SCN infestation. To gain insight into the still obscure mechanisms of genetic resistance to nematodes in different soybean genotypes, RNA-Seq profiling of the roots of Glycine max cv. Peking, Fayette, Williams 82, and a wild relative (Glycine soja PI 468916) was performed during SCN infection at the migratory phase. The analysis showed statistically significant changes of expression beginning at eight hours after inoculation in genes associated with defense mechanisms and pathways, such as the phenylpropanoid biosynthesis pathway, plant innate immunity and hormone signaling. Our results indicate the importance of the early plant response to migratory phase nematodes in pathogenicity determination. The transcriptome changes occurring during early SCN infection included a number of genes and pathways specific to the different resistant genotypes. We observed the most extensive resistant transcriptome reaction in PI 468916, where the resistant response was qualitatively different from that of commonly used G. max varieties.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/parasitologia , Doenças das Plantas/genética , Transcrição Gênica , Tylenchoidea/fisiologia , Animais , Vias Biossintéticas/genética , Mapeamento Cromossômico , Suscetibilidade a Doenças , Etilenos/biossíntese , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Filogenia , Doenças das Plantas/parasitologia , Propanóis/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
8.
Metabolism ; 102: 153996, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678069

RESUMO

BACKGROUND: We have recently shown that a novel signalling kinase, inositol hexakisphosphate kinase 1 (IP6K1), is implicated in whole-body insulin resistance via its inhibitory action on Akt. Insulin and insulin like growth factor 1 (IGF-1) share many intracellular processes with both known to play a key role in glucose and protein metabolism in skeletal muscle. AIMS: We aimed to compare IGF/IP6K1/Akt signalling and the plasma proteomic signature in individuals with a range of BMIs after ingestion of lean meat. METHODS: Ten lean [Body mass index (BMI) (in kg/m2): 22.7 ±â€¯0.4; Homeostatic model assessment of insulin resistance (HOMAIR): 1.36 ±â€¯0.17], 10 overweight (BMI: 27.1 ±â€¯0.5; HOMAIR: 1.25 ±â€¯0.11), and 10 obese (BMI: 35.9 ±â€¯1.3; HOMAIR: 5.82 ±â€¯0.81) adults received primed continuous L-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected at 0 min (post-absorptive), 120 min and 300 min relative to the ingestion of 170 g pork loin (36 g protein and 5 g fat) to examine skeletal muscle protein signalling, plasma proteomic signatures, and whole-body phenylalanine disappearance rates (Rd). RESULTS: Phenylalanine Rd was not different in obese compared to lean individuals at all time points and was not responsive to a pork ingestion (basal, P = 0.056; 120 & 300 min, P > 0.05). IP6K1 was elevated in obese individuals at 120 min post-prandial vs basal (P < 0.05). There were no acute differences plasma proteomic profiles between groups in the post-prandial state (P > 0.05). CONCLUSIONS: These data demonstrate, for the first time that muscle IP6K1 protein content is elevated after lean meat ingestion in obese adults, suggesting that IP6K1 may be contributing to the dysregulation of nutrient uptake in skeletal muscle. In addition, proteomic analysis showed no differences in proteomic signatures between obese, overweight or lean individuals.


Assuntos
Proteínas Sanguíneas/metabolismo , Ingestão de Alimentos/fisiologia , Carne , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteoma/metabolismo , Adulto , Fatores Etários , Proteínas Sanguíneas/análise , Índice de Massa Corporal , Gorduras na Dieta/farmacologia , Metabolismo Energético/fisiologia , Feminino , Glucose/metabolismo , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/análise , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Obesidade/sangue , Obesidade/patologia , Fosfotransferases (Aceptor do Grupo Fosfato)/análise , Período Pós-Prandial/fisiologia , Proteoma/análise , Magreza/sangue , Magreza/metabolismo , Magreza/patologia , Adulto Jovem
9.
Am J Physiol Cell Physiol ; 317(5): C1011-C1024, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433691

RESUMO

Unaccustomed resistance exercise can initiate skeletal muscle remodeling and adaptive mechanisms that can confer protection from damage and enhanced strength with subsequent stimulation. The myofiber may provide the primary origin for adaptation, yet multiple mononuclear cell types within the surrounding connective tissue may also contribute. The purpose of this study was to evaluate the acute response of muscle-resident interstitial cells to contraction initiated by electrical stimulation (e-stim) and subsequently determine the contribution of pericytes to remodeling as a result of training. Mice were subjected to bilateral e-stim or sham treatment. Following a single session of e-stim, NG2+CD45-CD31- (NG2+Lin-) pericyte, CD146+Lin- pericyte, and PDGFRα+ fibroadipogenic progenitor cell quantity and function were evaluated via multiplex flow cytometry and targeted quantitative PCR. Relative quantity was not significantly altered 24 h postcontraction, yet unique gene signatures were observed for each cell population at 3 h postcontraction. CD146+Lin- pericytes appeared to be most responsive to contraction, and upregulation of genes related to immunomodulation and extracellular matrix remodeling was observed via RNA sequencing. Intramuscular injection of CD146+Lin- pericytes did not significantly increase myofiber size yet enhanced ECM remodeling and angiogenesis in response to repeated bouts of e-stim for 4 wk. The results from this study provide the first evidence that CD146+Lin- pericytes are responsive to skeletal muscle contraction and may contribute to the beneficial outcomes associated with exercise.


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Pericitos/metabolismo , Animais , Antígeno CD146/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Estimulação Elétrica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
BMC Genomics ; 20(1): 15, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621583

RESUMO

BACKGROUND: Pathogens stimulate immune functions of macrophages. Macrophages are a key sentinel cell regulating the response to pathogenic ligands and orchestrating the direction of the immune response. Our study aimed at investigating the early transcriptomic changes of bovine macrophages (Bomacs) in response to stimulation with CpG DNA or polyI:C, representing bacterial and viral ligands respectively, and performed transcriptomics by RNA sequencing (RNASeq). KEGG, GO and IPA analytical tools were used to reconstruct pathways, networks and to map out molecular and cellular functions of differentially expressed genes (DE) in stimulated cells. RESULTS: A one-way ANOVA analysis of RNASeq data revealed significant differences between the CpG DNA and polyI:C-stimulated Bomac. Of the 13,740 genes mapped to the bovine genome, 2245 had p-value ≤0.05, deemed as DE. At 6 h post stimulation of Bomac, poly(I:C) induced a very different transcriptomic profile from that induced by CpG DNA. Whereas, 347 genes were upregulated and 210 downregulated in response to CpG DNA, poly(I:C) upregulated 761 genes and downregulated 414 genes. The topmost DE genes in poly(I:C)-stimulated cells had thousand-fold changes with highly significant p-values, whereas in CpG DNA stimulated cells had 2-5-fold changes with less stringent p-values. The highest DE genes in both stimulations belonged to the TNF superfamily, TNFSF18 (CpG) and TNFSF10 (poly(I:C)) and in both cases the lowest downregulated gene was CYP1A1. CpG DNA highly induced canonical pathways that are unrelated to immune response in Bomac. CpG DNA influenced expression of genes involved in molecular and cellular functions in free radical scavenging. By contrast, poly(I:C) highly induced exclusively canonical pathways directly related to antiviral immune functions mediated by interferon signalling genes. The transcriptomic profile after poly(I:C)-stimulation was consistent with induction of TLR3 signalling. CONCLUSION: CpG DNA and poly(I:C) induce different early transcriptional landscapes in Bomac, but each is suited to a specific function of macrophages during interaction with pathogens. Poly(I:C) influenced antiviral response genes, whereas CpG DNA influenced genes important for phagocytic processes. Poly(I:C) was more potent in setting the inflammatory landscape desirable for an efficient immune response against virus infection.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/metabolismo , Moléculas com Motivos Associados a Patógenos , Transcriptoma/genética , Animais , Bovinos , Linhagem Celular , Ilhas de CpG/genética , Citocromo P-450 CYP1A1/genética , Perfilação da Expressão Gênica , Genoma/genética , Ligantes , Macrófagos/microbiologia , Macrófagos/virologia , Poli I-C/genética , Fatores de Necrose Tumoral/genética
11.
PLoS One ; 13(8): e0201830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30130361

RESUMO

Firefighting activities appear to increase the risk of acute and chronic lung disease, including malignancy. While self-contained breathing apparatuses (SCBA) mitigate exposures to inhalable asphyxiates and carcinogens, firefighters frequently remove SCBA during overhaul when the firegrounds appear clear of visible smoke. Using a mouse model of overhaul without airway protection, the impact of fireground environment exposure on lung gene expression was assessed to identify transcripts potentially critical to firefighter-related chronic pulmonary illnesses. Lung tissue was collected 2 hrs post-overhaul and evaluated via whole genome transcriptomics by RNA-seq. Although gas metering showed that the fireground overhaul levels of carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanine (HCN), hydrogen sulfide (H2S) and oxygen (O2) were within NIOSH ceiling recommendations, 3852 lung genes were differentially expressed when mice exposed to overhaul were compared to mice on the fireground but outside the overhaul environment. Importantly, overhaul exposure was associated with an up/down-regulation of 86 genes with a fold change of 1.5 or greater (p<0.5) including the immunomodulatory-linked genes S100a8 and Tnfsf9 (downregulation) and the cancer-linked genes, Capn11 and Rorc (upregulation). Taken together these findings indicate that, without respiratory protection, exposure to the fireground overhaul environment is associated with transcriptional changes impacting proteins potentially related to inflammation-associated lung disease and cancer.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Bombeiros , Doenças do Sistema Imunitário/metabolismo , Exposição por Inalação/efeitos adversos , Pneumopatias/metabolismo , Pulmão/metabolismo , Animais , Estudos de Coortes , Incêndios , Regulação da Expressão Gênica , Doenças do Sistema Imunitário/epidemiologia , Pneumopatias/epidemiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Exposição Ocupacional , Dispositivos de Proteção Respiratória , Fatores de Risco , Transcriptoma
12.
BMC Biol ; 15(1): 54, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28662698

RESUMO

BACKGROUND: Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. RESULTS: Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. CONCLUSIONS: Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer's disease.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , RNA Helicases/genética , Retroelementos/genética , Animais , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Helicases/metabolismo
13.
Antonie Van Leeuwenhoek ; 102(2): 247-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22535436

RESUMO

During ethanol fermentation, yeast cells are exposed to stress due to the accumulation of ethanol, cell growth is altered and the output of the target product is reduced. For Agave beverages, like tequila, no reports have been published on the global gene expression under ethanol stress. In this work, we used microarray analysis to identify Saccharomyces cerevisiae genes involved in the ethanol response. Gene expression of a tequila yeast strain of S. cerevisiae (AR5) was explored by comparing global gene expression with that of laboratory strain S288C, both after ethanol exposure. Additionally, we used two different culture conditions, cells grown in Agave tequilana juice as a natural fermentation media or grown in yeast-extract peptone dextrose as artificial media. Of the 6368 S. cerevisiae genes in the microarray, 657 genes were identified that had different expression responses to ethanol stress due to strain and/or media. A cluster of 28 genes was found over-expressed specifically in the AR5 tequila strain that could be involved in the adaptation to tequila yeast fermentation, 14 of which are unknown such as yor343c, ylr162w, ygr182c, ymr265c, yer053c-a or ydr415c. These could be the most suitable genes for transforming tequila yeast to increase ethanol tolerance in the tequila fermentation process. Other genes involved in response to stress (RFC4, TSA1, MLH1, PAU3, RAD53) or transport (CYB2, TIP20, QCR9) were expressed in the same cluster. Unknown genes could be good candidates for the development of recombinant yeasts with ethanol tolerance for use in industrial tequila fermentation.


Assuntos
Agave/microbiologia , Bebidas Alcoólicas/microbiologia , Etanol/metabolismo , Perfilação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Agave/metabolismo , Fermentação , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA