Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 16(7): 2032-46, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498871

RESUMO

Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER)-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Exoma , Regulação Neoplásica da Expressão Gênica , Mutação , Transcriptoma , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Interpretação Estatística de Dados , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Poliadenilação , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Inativação do Cromossomo X
3.
Nature ; 534(7605): 47-54, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27135926

RESUMO

We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Assuntos
Neoplasias da Mama/genética , Genoma Humano/genética , Mutação/genética , Estudos de Coortes , Análise Mutacional de DNA , Replicação do DNA/genética , DNA de Neoplasias/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genômica , Humanos , Masculino , Mutagênese , Taxa de Mutação , Oncogenes/genética , Reparo de DNA por Recombinação/genética
4.
Nat Methods ; 10(8): 723-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23900255

RESUMO

The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Neoplasias/genética , Variação Genética , Humanos , Mutação
5.
Nat Genet ; 43(2): 117-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21186350

RESUMO

Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 × 10(-9), odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Metformina/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Relação Dose-Resposta a Droga , Estudo de Associação Genômica Ampla , Humanos , Hipoglicemiantes/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Quinases/metabolismo , Ratos , Escócia
6.
FEBS J ; 274(21): 5505-17, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17916191

RESUMO

Epidermal growth factor receptor (EGFR)-mediated signal transduction is often hyperactivated in tumour cells and therefore considered a promising target for cancer therapy. A number of computational models have been developed which describe the pathway in great detail. These models are similar in their description of the activation events. The deactivation of the EGFR signalling seems to be cell type-specific and is less understood. Deactivation via receptor internalization, feedback inhibition of son of sevenless (SOS) by double phosphorylated, extracellular signal-regulated kinase (ERKPP) or transiently activated Ras-GTPase activating protein (Ras-GAP) proteins is discussed to play a role. In this study we address the question of to what extent the effect of oncogenic perturbations on EGFR signalling depend on the specific regulation structure. This is investigated using a detailed pathway model under two regulatory modes: the negative feedback via ERKPP to SOS and feed-forward deactivation via transiently activated Ras-GAP proteins. We show that the effect of receptor overexpression differs qualitatively under both regulations. In the system with transiently activated Ras-GAP it may result in an attenuation of the ERK activation. Such a nonintuitive effect was also observed experimentally. In general we find the model with transiently activated Ras-GAP to have a higher robustness towards receptor overexpression and Ras mutations. In particular, we demonstrate that this model can compensate for these oncogenic perturbations if the regulation is strong. The negative feedback can not protect the system against Ras mutations. A general sensitivity analysis, however, shows a higher robustness of the model under negative feedback, indicating the limited significance of such analyses for the prediction of specific oncogenic perturbations.


Assuntos
Receptores ErbB/metabolismo , Mutação , Oncogenes , Transdução de Sinais/genética , Animais , Simulação por Computador , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA