Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Cardiovasc Med ; 10: 1231762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600045

RESUMO

While the role of Greeks in the development of early western medicine is well-known and appreciated, the contributions of modern Greek medical practitioners are less known and often overlooked. On the occasion of the 200-year anniversary of the Greek War of Independence, this review article sheds light onto the achievements of modern scientists of Greek descent in the development of cardiology, cardiac surgery, and cardiovascular research, through a short history of the development of these fields and of the related institutions in Greece. In the last decades, the Greek cardiology and Cardiac Surgery communities have been active inside and outside Greece and have a remarkable presence internationally, particularly in the United States. This article highlights the ways in which Greek cardiology and cardiovascular research has been enriched by absorbing knowledge produced in international medical centers, academic institutes and pharmaceutical industries in which generations of Greek doctors and researchers trained prior to their return to the homeland; it also highlights the achievements of medical practitioners and researchers of Greek descent who excelled abroad, producing ground-breaking work that has left a permanent imprint on global medicine.

3.
J Mol Cell Cardiol ; 163: 56-66, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653523

RESUMO

Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.


Assuntos
Cardiomiopatias , Sistema Cardiovascular , Sistema Cardiovascular/metabolismo , Coração , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo
4.
Circ Res ; 128(3): 335-357, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33539225

RESUMO

RATIONALE: Diabetic cardiomyopathy (DbCM) is a major complication in type-1 diabetes, accompanied by altered cardiac energetics, impaired mitochondrial function, and oxidative stress. Previous studies indicate that type-1 diabetes is associated with increased cardiac expression of KLF5 (Krüppel-like factor-5) and PPARα (peroxisome proliferator-activated receptor) that regulate cardiac lipid metabolism. OBJECTIVE: In this study, we investigated the involvement of KLF5 in DbCM and its transcriptional regulation. METHODS AND RESULTS: KLF5 mRNA levels were assessed in isolated cardiomyocytes from cardiovascular patients with diabetes and were higher compared with nondiabetic individuals. Analyses in human cells and diabetic mice with cardiomyocyte-specific FOXO1 (Forkhead box protein O1) deletion showed that FOXO1 bound directly on the KLF5 promoter and increased KLF5 expression. Diabetic mice with cardiomyocyte-specific FOXO1 deletion had lower cardiac KLF5 expression and were protected from DbCM. Genetic, pharmacological gain and loss of KLF5 function approaches and AAV (adeno-associated virus)-mediated Klf5 delivery in mice showed that KLF5 induces DbCM. Accordingly, the protective effect of cardiomyocyte FOXO1 ablation in DbCM was abolished when KLF5 expression was rescued. Similarly, constitutive cardiomyocyte-specific KLF5 overexpression caused cardiac dysfunction. KLF5 caused oxidative stress via direct binding on NADPH oxidase (NOX)4 promoter and induction of NOX4 (NADPH oxidase 4) expression. This was accompanied by accumulation of cardiac ceramides. Pharmacological or genetic KLF5 inhibition alleviated superoxide formation, prevented ceramide accumulation, and improved cardiac function in diabetic mice. CONCLUSIONS: Diabetes-mediated activation of cardiomyocyte FOXO1 increases KLF5 expression, which stimulates NOX4 expression, ceramide accumulation, and causes DbCM.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , PPAR alfa/metabolismo , Idoso , Animais , Linhagem Celular , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , PPAR alfa/genética , Transcrição Gênica
5.
Circulation ; 142(9): 882-898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640834

RESUMO

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Assuntos
Cardiomegalia/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinase/metabolismo , Animais , Cardiomegalia/genética , Proteínas Relacionadas à Folistatina/genética , Proteína Forkhead Box O1/genética , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Uridina Quinase/genética
6.
Am J Physiol Heart Circ Physiol ; 318(5): H1162-H1175, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216616

RESUMO

Nitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including ß-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2's desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD.NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.


Assuntos
Envelhecimento/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Cardiopatias/etiologia , Coração/fisiologia , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Envelhecimento/metabolismo , Animais , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Coração/crescimento & desenvolvimento , Coração/fisiopatologia , Cardiopatias/metabolismo , Homeostase , Masculino , Camundongos , Mutação
7.
Am J Physiol Heart Circ Physiol ; 318(4): H778-H786, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142354

RESUMO

Sepsis-induced cardiomyopathy (SIC) is associated with increased patient mortality. At present, there are no specific therapies for SIC. Previous studies have reported increased reactive oxygen species (ROS) and mitochondrial dysfunction during SIC. However, a unifying mechanism remains to be defined. We hypothesized that PKCδ is required for abnormal calcium handling and cardiac mitochondrial dysfunction during sepsis and that genetic deletion of PKCδ would be protective. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) surgery decreased the ejection fraction of wild-type (WT) mice but not PKCδ knockout (KO) mice. Similarly, WT cardiomyocytes exposed to lipopolysaccharide (LPS) demonstrated decreases in contractility and calcium transient amplitude that were not observed in PKCδ KO cardiomyocytes. LPS treatment decreased sarcoplasmic reticulum calcium stores in WT cardiomyocytes, which correlated with increased ryanodine receptor-2 oxidation in WT hearts but not PKCδ KO hearts after sepsis. LPS exposure increased mitochondrial ROS and decreased mitochondrial inner membrane potential in WT cardiomyocytes. This corresponded to morphologic changes consistent with mitochondrial dysfunction such as decreased overall size and cristae disorganization. Increased cellular ROS and changes in mitochondrial morphology were not observed in PKCδ KO cardiomyocytes. These data show that PKCδ is required in the pathophysiology of SIC by generating ROS and promoting mitochondrial dysfunction. Thus, PKCδ is a potential target for cardiac protection during sepsis.NEW & NOTEWORTHY Sepsis is often complicated by cardiac dysfunction, which is associated with a high mortality rate. Our work shows that the protein PKCδ is required for decreased cardiac contractility during sepsis. Mice with deletion of PKCδ are protected from cardiac dysfunction after sepsis. PKCδ causes mitochondrial dysfunction in cardiac myocytes, and reducing mitochondrial oxidative stress improves contractility in wild-type cardiomyocytes. Thus, PKCδ is a potential target for cardiac protection during sepsis.


Assuntos
Cardiomiopatias/genética , Mitocôndrias Cardíacas/metabolismo , Proteína Quinase C-delta/genética , Sepse/complicações , Animais , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Células Cultivadas , Feminino , Deleção de Genes , Lipopolissacarídeos/toxicidade , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Estresse Oxidativo , Proteína Quinase C-delta/metabolismo
8.
J Mol Cell Cardiol ; 127: 232-245, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30611795

RESUMO

Sepsis is the overwhelming systemic immune response to infection, which can result in multiple organ dysfunction and septic shock. Myocardial dysfunction during sepsis is associated with advanced disease and significantly increased in-hospital mortality. Our group has shown that energetic failure and excess reactive oxygen species (ROS) generation constitute major components of myocardial dysfunction in sepsis. Because ROS production is central to cellular metabolic health, we tested if the synthetic anti-oxidant lignan secoisolariciresinol diglucoside (SDG; LGM2605) would alleviate septic cardiac dysfunction and investigated the underlying mechanism. Using the cecal ligation and puncture (CLP) mouse model of peritonitis-induced sepsis, we observed impairment of cardiac function beginning at 4 h post-CLP surgery. Treatment of mice with LGM2605 (100 mg/kg body weight, i.p.) 6 h post-CLP surgery reduced cardiac ROS accumulation and restored cardiac function. Assessment of mitochondrial respiration (Seahorse XF) in primary cardiomyocytes obtained from adult C57BL/6 mice that had undergone CLP and treatment with LGM2605 showed restored basal and maximal respiration, as well as preserved oxygen consumption rate (OCR) associated with spare capacity. Further analyses aiming to identify the cellular mechanisms that may account for improved cardiac function showed that LGM2605 restored mitochondria abundance, increased mitochondrial calcium uptake and preserved mitochondrial membrane potential. In addition to protecting against cardiac dysfunction, daily treatment with LGM2605 and antibiotic ertapenem (70 mg/kg) protected against CLP-associated mortality and reversed hypothermia when compared against mice receiving ertapenem and saline. Therefore, treatment of septic mice with LGM2605 emerges as a novel pharmacological approach that reduces cardiac ROS accumulation, protects cardiac mitochondrial function, alleviates cardiac dysfunction, and improves survival.


Assuntos
Butileno Glicóis/síntese química , Butileno Glicóis/uso terapêutico , Cardiomiopatias/complicações , Cardiomiopatias/tratamento farmacológico , Glucosídeos/síntese química , Glucosídeos/uso terapêutico , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Butileno Glicóis/química , Butileno Glicóis/farmacologia , Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Ceco/patologia , Linhagem Celular , Citocinas/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/química , Glucosídeos/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Ligadura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Biogênese de Organelas , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Punções , Sepse/genética , Sepse/fisiopatologia
9.
Front Physiol ; 9: 516, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867559

RESUMO

Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.

10.
Curr Opin Clin Nutr Metab Care ; 21(4): 252-259, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847446

RESUMO

PURPOSE OF REVIEW: We present a current perspective of epigenetic alterations that can lead to cardiovascular disease (CVD) and the potential of dietary factors to counteract their actions. In addition, we discuss the challenges and opportunities of dietary treatments as epigenetic modifiers for disease prevention and therapy. RECENT FINDINGS: Recent epigenome-wide association studies along with candidate gene approaches and functional studies in cell culture and animal models have delineated mechanisms through which nutrients, food compounds and dietary patterns may affect the epigenome. Several risk factors for CVD, including adiposity, inflammation and oxidative stress, have been associated with changes in histone acetylation, lower global DNA methylation levels and shorter telomere length. A surplus of macronutrients such as in a high-fat diet or deficiencies of specific nutrients such as folate and other B-vitamins can affect the activity of DNA methyltransferases and histone-modifying enzymes, affecting foetal growth, glucose/lipid metabolism, oxidative stress, inflammation and atherosclerosis. Bioactive compounds such as polyphenols (resveratrol, curcumin) or epigallocatechin may activate deacetylases Sirtuins (SIRTs), histone deacetylases or acetyltransferases and in turn the response of inflammatory mediators. Adherence to cardioprotective dietary patterns, such as the Mediterranean diet (MedDiet), has been associated with altered methylation and expression of genes related to inflammation and immuno-competence. SUMMARY: The mechanisms through which nutrients and dietary patterns may alter the cardiovascular epigenome remain elusive. The research challenge is to determine which of these nutriepigenetic effects are reversible, so that novel findings translate into effective dietary interventions to prevent CVD or its progression.


Assuntos
Doenças Cardiovasculares , Metilação de DNA , Dieta , Epigênese Genética , Histonas/metabolismo , Estado Nutricional , Acetilação , Animais , Doenças Cardiovasculares/dietoterapia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Histona Desacetilases do Grupo III/metabolismo , Humanos , Inflamação/genética , Polifenóis , Processamento de Proteína Pós-Traducional
11.
Redox Biol ; 16: 215-225, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524844

RESUMO

Insufficient hydrogen sulfide (H2S) has been implicated in Type 2 diabetic mellitus (T2DM) and hyperhomocysteinemia (HHcy)-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA) of db/db mice fed a high methionine (HM) diet. HM diet (8 weeks) induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively), and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF)-induced endothelium-dependent relaxation to acetylcholine (ACh), determined by the presence of eNOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) and prostacyclin (PGI2) inhibitor indomethacin (INDO), in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa) opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa) Tram-34, but not by small-conductance KCa (SKCa) blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. CONCLUSIONS: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S impaired EDHF-induced vascular relaxation via oxidative stress and IKCa inactivation in T2DM/HHcy mice. H2S therapy may be beneficial for prevention and treatment of micro-vascular complications in patients with T2DM and HHcy.


Assuntos
Fatores Biológicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Acetilcolina/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/patologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos NOD , Óxido Nítrico/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Vasodilatação/genética
12.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878116

RESUMO

Cardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy. Treatment of isolated adult mouse cardiomyocytes with low concentrations of the endotoxin lipopolysaccharide (LPS) increased total cellular reactive oxygen species (ROS) and mitochondrial superoxide. Elevated mitochondrial superoxide was accompanied by depolarization of the mitochondrial inner membrane potential, an indication of mitochondrial dysfunction, and mitochondrial calcium overload. NOX2 inhibition decreased LPS-induced superoxide and prevented mitochondrial dysfunction. Further, cardiomyocytes from mice with genetic ablation of NOX2 did not have LPS-induced superoxide or mitochondrial dysfunction. LPS decreased contractility and calcium transient amplitude in isolated cardiomyocytes, and these abnormalities were prevented by inhibition of NOX2. LPS decreased systolic function in mice, measured by echocardiography. NOX2 inhibition was cardioprotective in 2 mouse models of sepsis, preserving systolic function after LPS injection or cecal ligation and puncture (CLP). These data show that inhibition of NOX2 decreases oxidative stress, preserves intracellular calcium handling and mitochondrial function, and alleviates sepsis-induced systolic dysfunction in vivo. Thus, NOX2 is a potential target for pharmacotherapy of sepsis-induced cardiomyopathy.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/prevenção & controle , Mitocôndrias Cardíacas/metabolismo , NADPH Oxidase 2/antagonistas & inibidores , Sepse/complicações , Animais , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Ecocardiografia , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , Fosforilação Oxidativa , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
13.
Circ Res ; 118(2): 241-53, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26574507

RESUMO

RATIONALE: Fatty acid oxidation is transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)α and under normal conditions accounts for 70% of cardiac ATP content. Reduced Ppara expression during sepsis and heart failure leads to reduced fatty acid oxidation and myocardial energy deficiency. Many of the transcriptional regulators of Ppara are unknown. OBJECTIVE: To determine the role of Krüppel-like factor 5 (KLF5) in transcriptional regulation of Ppara. METHODS AND RESULTS: We discovered that KLF5 activates Ppara gene expression via direct promoter binding. This is blocked in hearts of septic mice by c-Jun, which binds an overlapping site on the Ppara promoter and reduces transcription. We generated cardiac myocyte-specific Klf5 knockout mice that showed reduced expression of cardiac Ppara and its downstream fatty acid metabolism-related targets. These changes were associated with reduced cardiac fatty acid oxidation, ATP levels, increased triglyceride accumulation, and cardiac dysfunction. Diabetic mice showed parallel changes in cardiac Klf5 and Ppara expression levels. CONCLUSIONS: Cardiac myocyte KLF5 is a transcriptional regulator of Ppara and cardiac energetics.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Metabolismo Energético , Fatores de Transcrição Kruppel-Like/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Sepse/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Ácidos Graxos/metabolismo , Genótipo , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , PPAR alfa/genética , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Sepse/genética , Sepse/fisiopatologia , Transdução de Sinais , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional , Transfecção , Triglicerídeos/metabolismo , Regulação para Cima
14.
Biochim Biophys Acta ; 1841(12): 1648-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25251292

RESUMO

We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPARγ; ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER stress, as measured by upregulation of CHOP, ATF6 and GRP78 gene expression and phosphorylation of eukaryotic initiation factor 2a (EIF2a). Both ACSL1 and PPARγ adenovirus-mediated expression augmented neutral lipid accumulation and reduced palmitate-induced upregulation of ER stress markers to levels similar to those in the oleate and control treatment groups. This suggests that increased channeling of non-esterified free fatty acids (NEFA) towards storage in the form of neutral lipids in lipid droplets protects against palmitate-induced ER stress. Overexpression of ATGL in cells incubated with oleate-containing medium increased NEFA release and stimulated expression of ER stress markers. Thus, inefficient creation of lipid droplets as well greater release of stored lipids induces ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Graxos/toxicidade , Modelos Biológicos , Miócitos Cardíacos/patologia , Triglicerídeos/toxicidade , Acetato-CoA Ligase/metabolismo , Adulto , Biomarcadores/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipase/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Palmitatos/toxicidade
15.
J Bone Miner Res ; 29(5): 1183-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24272998

RESUMO

Both obesity and diabetes mellitus are associated with alterations in lipid metabolism as well as a change in bone homeostasis and osteoclastogenesis. We hypothesized that increased fatty acid levels affect bone health by altering precursor cell differentiation and osteoclast activation. Here we show that palmitic acid (PA, 16:0) enhances receptor activator of NF-κB ligand (RANKL)-stimulated osteoclastogenesis and is sufficient to induce osteoclast differentiation even in the absence of RANKL. TNFα expression is crucial for PA-induced osteoclastogenesis, as shown by increased TNFα mRNA levels in PA-treated cells and abrogation of PA-stimulated osteoclastogenesis by TNFα neutralizing antibodies. In contrast, oleic acid (OA, 18:1) does not enhance osteoclast differentiation, leads to increased intracellular triglyceride accumulation, and inhibits PA-induced osteoclastogenesis. Adenovirus-mediated expression of diacylglycerol acyl transferase 1 (DGAT1), a gene involved in triglyceride synthesis, also inhibits PA-induced osteoclastogenesis, suggesting a protective role of DGAT1 for bone health. Accordingly, Dgat1 knockout mice have larger bone marrow-derived osteoclasts and decreased bone mass indices. In line with these findings, mice on a high-fat PA-enriched diet have a greater reduction in bone mass and structure than mice on a high-fat OA-enriched diet. Thus, we propose that TNFα mediates saturated fatty acid-induced osteoclastogenesis that can be prevented by DGAT activation or supplementation with OA.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diacilglicerol O-Aciltransferase , Inibidores Enzimáticos/farmacologia , Ácido Oleico/farmacologia , Osteoclastos/metabolismo , Ácido Palmítico/farmacologia , Triglicerídeos/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular/genética , Linhagem Celular , Gorduras na Dieta/farmacologia , Camundongos , Camundongos Knockout , Osteoclastos/patologia
16.
Circ Res ; 113(8): 1004-12, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23836795

RESUMO

RATIONALE: Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. OBJECTIVE: We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. METHODS AND RESULTS: In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c(LO) myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk(+/+) marrow into Mertk(-/-) mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. CONCLUSIONS: These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.


Assuntos
Apoptose , Inflamação/enzimologia , Macrófagos/enzimologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Fagocitose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Cicatrização , Animais , Antígenos Ly/metabolismo , Transplante de Medula Óssea , Antígenos CD36/deficiência , Antígenos CD36/genética , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Fatores de Tempo , Quimeras de Transplante , Função Ventricular Esquerda , Remodelação Ventricular , c-Mer Tirosina Quinase
17.
J Cardiovasc Pharmacol ; 61(4): 345-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23567901

RESUMO

Fish oil (FO) supplementation may improve cardiac function in some patients with heart failure, especially those with diabetes. To determine why this occurs, we studied the effects of FO in mice with heart failure either due to transgenic expression of the lipid uptake protein acyl CoA synthetase 1 (ACS1) or overexpression of the transcription factor peroxisomal proliferator-activated receptor (PPAR) γ via the cardiac-specific myosin heavy chain (MHC) promoter. ACS1 mice and control littermates were fed 3 diets containing low-dose or high-dose FO or nonpurified diet (NPD) for 6 weeks. MHC-PPARγ mice were fed low-dose FO or NPD. Compared with control mice fed with NPD, ACS1, and MHC-PPARγ, mice fed with NPD had reduced cardiac function and survival with cardiac fibrosis. In contrast, ACS1 mice fed with high-dose FO had better cardiac function, survival, and less myocardial fibrosis. FO increased eicosapentaenoic and docosahexaenoic acids and reduced saturated fatty acids in cardiac diacylglycerols. This was associated with reduced protein kinase C alpha and beta activation. In contrast, low-dose FO reduced MHC-PPARγ mice survival with no change in protein kinase C activation or cardiac function. Thus, dietary FO reverses fibrosis and improves cardiac function and survival of ACS1 mice but does not benefit all forms of lipid-mediated cardiomyopathy.


Assuntos
Coenzima A Ligases/genética , Óleos de Peixe/farmacologia , Cadeias Pesadas de Miosina/genética , PPAR gama/genética , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Feminino , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Proteína Quinase C-alfa/metabolismo , Taxa de Sobrevida
18.
J Biol Chem ; 288(20): 14046-14058, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23542081

RESUMO

Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Lipase Lipoproteica/deficiência , Lipase Lipoproteica/genética , Adipócitos/citologia , Animais , Transplante de Medula Óssea , Quilomícrons/farmacocinética , Lipídeos/química , Lipólise , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
19.
Circ Heart Fail ; 6(3): 550-62, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23572494

RESUMO

BACKGROUND: Cardiac dysfunction with sepsis is associated with both inflammation and reduced fatty acid oxidation. We hypothesized that energy deprivation accounts for sepsis-related cardiac dysfunction. METHODS AND RESULTS: Escherichia coli lipopolysaccharide (LPS) administered to C57BL/6 mice (wild type) induced cardiac dysfunction and reduced fatty acid oxidation and mRNA levels of peroxisome proliferator-activated receptor (PPAR)-α and its downstream targets within 6-8 hours. Transgenic mice in which cardiomyocyte-specific expression of PPARγ is driven by the α-myosin heavy chain promoter (αMHC-PPARγ) were protected from LPS-induced cardiac dysfunction. Despite a reduction in PPARα, fatty acid oxidation and associated genes were not decreased in hearts of LPS-treated αMHC-PPARγ mice. LPS treatment, however, continued to induce inflammation-related genes, such as interleukin-1α, interleukin-1ß, interleukin-6, and tumor necrosis factor-α in hearts of αMHC-PPARγ mice. Treatment of wild-type mice with LPS and the PPARγ agonist, rosiglitazone, but not the PPARα agonist (WY-14643), increased fatty acid oxidation, prevented LPS-mediated reduction of mitochondria, and treated cardiac dysfunction, as well as it improved survival, despite continued increases in the expression of cardiac inflammatory markers. CONCLUSIONS: Activation of PPARγ in LPS-treated mice prevented cardiac dysfunction and mortality, despite development of cardiac inflammation and PPARα downregulation.


Assuntos
Cardiopatias/fisiopatologia , PPAR gama/metabolismo , Sepse/complicações , Animais , Ácidos Graxos/metabolismo , Cardiopatias/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , PPAR gama/agonistas , Rosiglitazona , Sepse/fisiopatologia , Sepse/terapia , Tiazolidinedionas/farmacologia , Disfunção Ventricular Esquerda/fisiopatologia
20.
J Biol Chem ; 286(42): 36331-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21873422

RESUMO

Septic shock results from bacterial infection and is associated with multi-organ failure, high mortality, and cardiac dysfunction. Sepsis causes both myocardial inflammation and energy depletion. We hypothesized that reduced cardiac energy production is a primary cause of ventricular dysfunction in sepsis. The JNK pathway is activated in sepsis and has also been implicated in impaired fatty acid oxidation in several tissues. Therefore, we tested whether JNK activation inhibits cardiac fatty acid oxidation and whether blocking JNK would restore fatty acid oxidation during LPS treatment. LPS treatment of C57BL/6 mice and adenovirus-mediated activation of the JNK pathway in cardiomyocytes inhibited peroxisome proliferator-activated receptor α expression and fatty acid oxidation. Surprisingly, none of the adaptive responses that have been described in other types of heart failure, such as increased glucose utilization, reduced αMHC:ßMHC ratio or induction of certain microRNAs, occurred in LPS-treated mice. Treatment of C57BL/6 mice with a general JNK inhibitor (SP600125) increased fatty acid oxidation in mice and a cardiomyocyte-derived cell line. JNK inhibition also prevented LPS-mediated reduction in fatty acid oxidation and cardiac dysfunction. Inflammation was not alleviated in LPS-treated mice that received the JNK inhibitor. We conclude that activation of JNK signaling reduces fatty acid oxidation and prevents the peroxisome proliferator-activated receptor α down-regulation that occurs with LPS.


Assuntos
Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Cardiopatias/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Musculares/biossíntese , Miocárdio/metabolismo , PPAR alfa/biossíntese , Animais , Antracenos/farmacologia , Linhagem Celular , Ácidos Graxos/genética , Cardiopatias/induzido quimicamente , Cardiopatias/genética , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos , Camundongos Knockout , Proteínas Musculares/antagonistas & inibidores , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução/efeitos dos fármacos , PPAR alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA