Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675196

RESUMO

Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.

2.
Cell Rep ; 40(13): 111412, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170819

RESUMO

Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.


Assuntos
AMP Cíclico , Neoplasias , Humanos , Linhagem Celular , AMP Cíclico/metabolismo , Via de Sinalização Hippo , Fosforilação , Proteínas Serina-Treonina Quinases , Serina/metabolismo
3.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757079

RESUMO

The nuclei of cells may exhibit invaginations of the nuclear envelope under a variety of conditions. These invaginations form a branched network termed the nucleoplasmic reticulum (NR), which may be found in cells in pathological and physiological conditions. While an extensive NR is a hallmark of cellular senescence and shows associations with some cancers, very little is known about the formation of NR in physiological conditions, despite the presence of extensive nuclear invaginations in some cell types such as endometrial cells. Here we show that in these cells the NR is formed in response to reproductive hormones. We demonstrate that oestrogen and progesterone are sufficient to induce NR formation and that this process is reversible without cell division upon removal of the hormonal stimulus. Nascent lamins and phospholipids are incorporated into the invaginations suggesting that there is a dedicated machinery for its formation. The induction of NR in endometrial cells offers a new model to study NR formation and function in physiological conditions.


Assuntos
Núcleo Celular/efeitos dos fármacos , Endométrio/citologia , Estrogênios/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Feminino , Humanos
4.
PLoS One ; 12(5): e0177990, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542436

RESUMO

The nuclear lamina can bind and sequester transcription factors (TFs), a function lost if the lamina is abnormal, with missing or mutant lamin proteins. We now show that TF sequestration is not all-or-nothing, but a dynamic physiological response to external signals. We show that the binding of the ubiquitous TF, Oct-1, to lamin B1 was reversed under conditions of cellular stress caused, inter alia, by the chemical methylating agent methylmethanesulfonate (MMS). A search for lamin B1 post-translational modifications that might mediate changes in Oct-1 binding using kinase inhibitors uncovered a role for c-Jun N-terminal kinase (JNK). Phosphoproteomic and site-directed mutagenesis analyses of lamin B1 isolated from control and MMS-treated nuclei identified T575 as a JNK site phosphorylated after stress. A new phospho-T575 specific anti-peptide antibody confirmed increased interphase cellular T575 phosphorylation after cell exposure to certain stress conditions, enabling us to conclude that lamin B1 acts as an interphase kinase target, releasing Oct-1 to execute a protective response to stress.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lamina Tipo B/metabolismo , Membrana Nuclear/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Metanossulfonato de Metila/farmacologia , Mutagênese Sítio-Dirigida , Proteínas Nucleares/biossíntese , Fosforilação , Ligação Proteica , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA