Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 169, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649058

RESUMO

Endophytes, especially those isolated from herbal plants, may act as a reservoir of a variety of secondary metabolites exhibiting biological activity. Some endophytes express the ability to produce the same bioactive compounds as their plant hosts, making them a more sustainable industrial supply of these substances. Urtica dioica L. (common stinging nettle) is a synanthropic plant that is widely used in herbal medicine due to the diversity of bioactive chemicals it contains, e.g., polyphenols, which demonstrate anti-inflammatory, antioxidant, and anti-cancerous capabilities. This study aimed at isolating endophytic bacteria from stinging nettles for their bioactive compounds. The endophytic isolates were identified by both biochemical and molecular methods (16S rRNA) and investigated for enzymes, biosurfactants, and polyphenols production. Each of the isolated bacterial strains was capable of producing biosurfactants and polyphenols. However, three of the isolated endophytes, identified as two strains of Bacillus cereus and one strain of Bacillus mycoides, possessed the greatest capacity to produce biosurfactants and polyphenols. The derivatized extracts from culture liquid showed the 1.633 mol l-1 (9.691 mg l-1) concentration of polyphenol compounds. Therefore, the present study signifies that endophytic B. cereus and B. mycoides isolated from Urtica dioica L. could be a potential source of biosurfactants and polyphenols. However, further study is required to understand the mechanism of the process and achieve efficient polyphenol production by endophytic bacteria.


Assuntos
Bactérias , Urtica dioica , Urtica dioica/microbiologia , Bacillus cereus/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Endófitos/química , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Polifenóis/análise , Enzimas/metabolismo , Genótipo
2.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373241

RESUMO

For thousands of years, plants have been used for their medicinal properties. The industrial production of plant-beneficial compounds is facing many drawbacks, such as seasonal dependence and troublesome extraction and purification processes, which have led to many species being on the edge of extinction. As the demand for compounds applicable to, e.g., cancer treatment, is still growing, there is a need to develop sustainable production processes. The industrial potential of the endophytic microorganisms residing within plant tissues is undeniable, as they are often able to produce, in vitro, similar to or even the same compounds as their hosts. The peculiar conditions of the endophytic lifestyle raise questions about the molecular background of the biosynthesis of these bioactive compounds in planta, and the actual producer, whether it is the plant itself or its residents. Extending this knowledge is crucial to overcoming the current limitations in the implementation of endophytes for larger-scale production. In this review, we focus on the possible routes of the synthesis of host-specific compounds in planta by their endophytes.


Assuntos
Endófitos , Fungos , Plantas
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293297

RESUMO

Creosote oil, a byproduct of coal distillation, is primarily composed of aromatic compounds that are difficult to degrade, such as polycyclic aromatic hydrocarbons, phenolic compounds, and N-, S-, and O-heterocyclic compounds. Despite its toxicity and carcinogenicity, it is still often used to impregnate wood, which has a particularly negative impact on the condition of the soil in plants that impregnate wooden materials. Therefore, a rapid, effective, and eco-friendly technique for eliminating the creosote in this soil must be developed. The research focused on obtaining a preparation of Bjerkandera adusta DSM 3375 mycelium immobilized in polyurethane foam (PUF). It contained mold cells in the amount of 1.10 ± 0.09 g (DW)/g of the carrier. The obtained enzyme preparation was used in the bioremediation of soil contaminated with creosote (2% w/w). The results showed that applying the PUF-immobilized mycelium of B. adusta DSM 3375 over 5, 10, and 15 weeks of bioremediation, respectively, removed 19, 30, and 35% of creosote from the soil. After 15 weeks, a 73, 79, and 72% level of degradation of fluoranthene, pyrene, and fluorene, respectively, had occurred. The immobilized cells have the potential for large-scale study, since they can degrade creosote oil in soil.


Assuntos
Coriolaceae , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Creosoto/análise , Creosoto/metabolismo , Biodegradação Ambiental , Solo , Poluentes do Solo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Pirenos , Fluorenos , Carvão Mineral
4.
Chemosphere ; 250: 126203, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32092570

RESUMO

Removal of slop oil, a by-product of oil refining, also obtained in cleaning up of oil tanks and filters is a difficult issue. High content of hydrocarbons (C3-C40) and other organic compounds makes this waste difficult to eliminate from the environment. The purpose of this investigation was to combine bacterial degradation by endophytic Bacillus cereus EN18 with biotransformation performed using lipase enzyme preparation (Palatase®) to remove recalcitrant compounds present in slop oil from the environment. Endophytic B. cereus EN18 was able to biodegrade up to 40% of slop oil while supplementation with lipase improved the efficiency of contamination removal in about one third. Also the use of lipase enzyme preparation resulted in higher microbial activity of B. cereus EN18 bacterial strain, as well as higher concentration of fatty acids in the culture medium, which indicates higher degradation efficiency. Obtained results suggest that lipase preparation from Rhizomucor miehei (Palatase®) may be a useful agent to improve microbial degradation of recalcitrant pollutants, like slop oil in water environments. GC and spectrometric analysis revealed that hydrocarbons from slop oil were effectively degraded while using both microbial degradation and lipase catalysis.


Assuntos
Biodegradação Ambiental , Bacillus cereus , Ácidos Graxos , Hidrocarbonetos/metabolismo , Lipase/metabolismo , Rhizomucor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA