Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(4): e1009327, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901174

RESUMO

The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Proteínas Fetais/genética , Meiose/genética , Proteínas Associadas aos Microtúbulos/genética , Oócitos/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Aurora Quinase B/genética , Aurora Quinase C/genética , Divisão do Núcleo Celular/genética , Segregação de Cromossomos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Centro Organizador dos Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/genética , Polos do Fuso/genética , Quinase 1 Polo-Like
2.
Curr Biol ; 28(21): 3458-3468.e5, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30415701

RESUMO

Errors in chromosome segregation during female meiosis I occur frequently, and aneuploid embryos account for 1/3 of all miscarriages in humans [1]. Unlike mitotic cells that require two Aurora kinase (AURK) homologs to help prevent aneuploidy (AURKA and AURKB), mammalian germ cells also require a third (AURKC) [2, 3]. AURKA is the spindle-pole-associated homolog, and AURKB/C are the chromosome-localized homologs. In mitosis, AURKB has essential roles as the catalytic subunit of the chromosomal passenger complex (CPC), regulating chromosome alignment, kinetochore-microtubule attachments, cohesion, the spindle assembly checkpoint, and cytokinesis [4, 5]. In mouse oocyte meiosis, AURKC takes over as the predominant CPC kinase [6], although the requirement for AURKB remains elusive [7]. In the absence of AURKC, AURKB compensates, making defining potential non-overlapping functions difficult [6, 8]. To investigate the role(s) of AURKB and AURKC in oocytes, we analyzed oocyte-specific Aurkb and Aurkc single- and double-knockout (KO) mice. Surprisingly, we find that double KO female mice are fertile. We demonstrate that, in the absence of AURKC, AURKA localizes to chromosomes in a CPC-dependent manner. These data suggest that AURKC prevents AURKA from localizing to chromosomes by competing for CPC binding. This competition is important for adequate spindle length to support meiosis I. We also describe a unique requirement for AURKB to negatively regulate AURKC to prevent aneuploidy. Together, our work reveals oocyte-specific roles for the AURKs in regulating each other's localization and activity. This inter-kinase regulation is critical to support wild-type levels of fecundity in female mice.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Meiose , Oócitos/metabolismo , Aneuploidia , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Segregação de Cromossomos/genética , Feminino , Fertilidade/genética , Camundongos
3.
Life Sci ; 150: 32-8, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26916824

RESUMO

AIMS: Chalcones, naturally occurring open-chain polyphenols abundant in plants, have demonstrated antiproliferative activity in several cancer cell lines. In the present study, the potential anticancer activity of two synthetic analogues named Ch1 and Ch2 in colon cancer cell line was investigated. MAIN METHODS: Antiproliferative activities of both synthetic analogues were assessed by Growth Inhibition Assay (MTT) and xCELLigence cell analysis. Apoptosis was assessed by annexin V/PI staining (early stage) or by DNA fragmentation (final stage). To study the cell death mechanism induced by tested substances, we assessed a series of assays including measurements of the caspase 3 activity, membrane mitochondrial potential (MMP) changes, reactive oxygen species (ROS) production by flow cytometry and expression of important apoptosis-related genes by realtime PCR. KEY FINDINGS: We found concentration and time-dependent cytotoxicity, inhibition of proliferation of Caco-2 cells after Ch1 and Ch2 treatment in parallel with G2/M phase cell cycle arrest and increased cell proportion in subG0/G1 population with annexin V positivity. We demonstrated that both Ch1 and Ch2 induced caspase-dependent cell death associated with increased ROS production, suppressed Bcl-2 and Bcl-xL and enhanced Bax expression. Treatment of Ch1 also suppressed α-, α1- and ß5-tubulins, on the other hand Ch2 only suppressed α-tubulin expression. SIGNIFICANCE: Presented chalcones induce apoptosis by intrinsic pathways, and therefore may be an interesting strategy for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Chalconas/farmacologia , Neoplasias do Colo/patologia , Fase G2/efeitos dos fármacos , Células CACO-2 , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/biossíntese
4.
Molecules ; 19(8): 10877-97, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25068784

RESUMO

This study was designed to examine the in vitro antiproliferative effect of brassinin and its derivatives on human cancer cell lines. Among seven tested compounds, homobrassinin (K1; N-[2-(indol-3-yl)ethyl]-S-methyldithiocarbamate) exhibited the most potent activity with IC50 = 8.0 µM in human colorectal Caco2 cells and was selected for further studies. The flow cytometric analysis revealed a K1-induced increase in the G2/M phase associated with dysregulation of α-tubulin, α1-tubulin and ß5-tubulin expression. These findings suggest that the inhibitory effect of K1 can be mediated via inhibition of microtubule formation. Furthermore, simultaneously with G2/M arrest, K1 also increased population of cells with sub-G1 DNA content which is considered to be a marker of apoptotic cell death. Apoptosis was also confirmed by annexin V/PI double staining, DNA fragmentation assay and chromatin condensation assay. The apoptosis was associated with the loss of mitochondrial membrane potential (MMP), caspase-3 activation as well as intracellular reactive oxygen species (ROS) production. Moreover, the antioxidant Trolox blocked ROS production, changes in MMP and decreased K1 cytotoxicity, which confirmed the important role of ROS in cell apoptosis. Taken together, our data demonstrate that K1 induces ROS-dependent apoptosis in Caco2 cells and provide the rationale for further in vivo anticancer investigation.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Tiocarbamatos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células CACO-2 , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis/química , Concentração Inibidora 50 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tiocarbamatos/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
Tumour Biol ; 35(10): 9967-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25008568

RESUMO

Colorectal cancer is the third most common cancer in the world, with 1.2 million new cancer cases annually. Chalcones are secondary metabolite precursors of flavonoids that exhibit diverse biological activities, including antioxidant and antitumor activities. The aim of this study was to investigate the antiproliferative effect of new synthetic chalcone derivatives on HCT116 cells. (E)-2-(2',4'-dimethoxybenzylidene)-1-tetralone (Q705) was found to be the most active (IC50 = 3.44 ± 0.25 µM). Based on these results, this compound was chosen for further analysis of its biochemical and molecular mechanisms. Our results showed that Q705 inhibited the growth and clonogenicity of HCT116 cells. The results of a flow cytometric analyses suggested that this compound caused a significant cell cycle arrest in G2/M phase and increased the proportion of cells in the subG0/G1 phase, marker of apoptosis. Q705-induced apoptosis was confirmed by TdT-mediated dUTP nick end labelling (TUNEL) assay. Treatment of HCT116 cells with this chalcone significantly increased the caspase-3,-7 activity and resulted in cleavage of poly-ADP-ribose polymerase (PARP). Changes in the nuclear morphology such as chromatin condensation were also observed. These effects were associated with a decreased expression of bcl-xL and increased overall ratio of bax/bcl-xL mRNA levels. Immunofluorescence and qRT-PCR analysis revealed that Q705 induced H2AX histone modifications characteristic of DNA damage, disruption of microtubule organization and downregulation of tubulins. In summary, these results suggest that the cyclic chalcone analogue Q705 has potential as a new compound for colorectal cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Chalconas/farmacologia , Neoplasias Colorretais/patologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Células HCT116 , Humanos , Marcação In Situ das Extremidades Cortadas , Reação em Cadeia da Polimerase em Tempo Real
6.
Toxicol In Vitro ; 28(5): 909-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24747292

RESUMO

The aim of the study was to investigate the anti-proliferative activity of brassinin and its derivatives on human cancer cell lines. We found that among twenty-one tested compounds, 1- methoxybrassinin exerted the most potent anti-proliferative activity in Caco-2 cells with IC50 8.2 (±1.2)µmoll(-1). The flow cytometric analysis revealed a 1-methoxybrassinin-induced increase in the sub-G1 DNA content fraction which is considered to be a marker of apoptotic cell death. Apoptosis was also confirmed by DNA fragmentation assay. Moreover, quantitative real-time PCR showed that 1-methoxybrassinin upregulated the expression of pro-apoptotic Bax and downregulated the expression of anti-apoptotic genes Bcl-2 and Bcl-xL. The compound also increased activity of caspase-3, -7, cleaved PARP and decreased intracellular GSH content. The present study has assessed the in vitro anti-proliferative potential of 1-methoxybrassinin. The results generate a rationale for in vivo efficacy studies with this compound in preclinical cancer models.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Tiocarbamatos/farmacologia , Células CACO-2 , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA