Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Int Immunopharmacol ; 138: 112552, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917521

RESUMO

Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1ß and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.

2.
J Antibiot (Tokyo) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914795

RESUMO

Bacterial infections caused by multidrug-resistant (MDR) gram-negative strains carrying the mobile colistin resistance gene mcr-1 are serious threats to world public health due to the lack of effective treatments. Inhibition of the ATP synthase makes bacteria such as Staphylococcus aureus and Klebsiella pneumoniae more sensitive to polymyxin. This provides new strategies for treating infections caused by polymyxins-resistant bacteria carrying mcr-1. Six mcr-1-positive strains were isolated from clinical samples, and all were identified as Escherichia coli. Here we investigated several ATP synthase inhibitors, N,N'-dicyclohexylcarbodiimide (DCCD), resveratrol, and piceatannol, for their antibacterial effects against the mcr-1-positive strains combined with polymyxin B (POL). Checkerboard assay, time-kill assay, biofilm inhibition and eradication assay indicated the significant synergistic effect of ATP synthase inhibitors/POL combination in vitro. Meanwhile, mouse infection model experiment was also performed, showing a 5 log10 reduction of the pathogen after treatment with the resveratrol/POL combination. Moreover, adding adenosine disodium triphosphate (Na2ATP) could inhibit the antibacterial effect of the ATP synthase inhibitors/POL combination. In conclusion, our study confirmed that inhibition of ATP production could increase the susceptibility of bacteria carrying mcr-1 to polymyxins. This provides a new strategy against polymyxins-resistant bacteria infection.

3.
Sci China Life Sci ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38900236

RESUMO

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.

4.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760755

RESUMO

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Lipoproteínas HDL , Macrófagos , Monócitos , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Monócitos/efeitos dos fármacos , Nanopartículas/química , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Nanomedicina/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia
5.
PLoS Biol ; 22(5): e3002621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805565

RESUMO

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Assuntos
Adenocarcinoma de Pulmão , Colesterol , Progressão da Doença , Fator 3-gama Nuclear de Hepatócito , Neoplasias Pulmonares , Colesterol/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos , Fator 3-gama Nuclear de Hepatócito/metabolismo , Fator 3-gama Nuclear de Hepatócito/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
6.
Front Bioeng Biotechnol ; 12: 1368818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807650

RESUMO

Objective: We aimed to evaluate the efficacy of antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in the treatment of limb-localized osteomyelitis (Cierny-Mader type III) and analyze the causes and risk factors associated with infection recurrence. Methods: Clinical data of 163 patients with localized osteomyelitis of the extremities treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in Xi'an Honghui Hospital from January 2017 to December 2022 were retrospectively analyzed. All patients were diagnosed with localized osteomyelitis through clinical examination and treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone. Based on the infection recurrence status, the patients were divided into the recurrence group and the non-recurrence group. The clinical data of the two groups were compared using univariate analysis. Subsequently, the distinct datasets were included in the binary logistic regression analysis to determine the risk and protective factors. Results: This study included 163 eligible patients, with an average age of 51.0 years (standard deviation: 14.9). After 12 months of follow-up, 25 patients (15.3%) experienced infection recurrence and were included in the recurrence group; the remaining 138 patients were included in the non-recurrence group. Among the 25 patients with recurrent infection, 20 required reoperation, four received antibiotic treatment alone, and one refused further treatment. Univariate analysis showed that education level, smoking, hypoproteinemia, open injury-related infection, and combined flap surgery were associated with infection recurrence (p < 0.05). Logistic regression analysis showed that open injury-related infection (odds ratio [OR] = 35.698; 95% confidence interval [CI]: 5.997-212.495; p < 0.001) and combined flap surgery (OR = 41.408; 95% CI: 5.806-295.343; p < 0.001) were independent risk factors for infection recurrence. Meanwhile, high education level (OR = 0.009; 95% CI: 0.001-0.061; p < 0.001) was a protective factor for infection recurrence. Conclusion: Antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation is an effective method for treating limb-localized osteomyelitis. Patients without previous combined flap surgery and non-open injury-related infections have a relatively low probability of recurrence of infection after treatment with this surgical method. Additionally, patients with a history of smoking and hypoproteinemia should pay attention to preventing the recurrence of infection after operation. Providing additional guidance and support, particularly in patients with lower education levels and compliance, could contribute to the reduction of infection recurrence.

7.
J Hematol Oncol ; 17(1): 9, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402237

RESUMO

BACKGROUND: Emerging evidences suggest that aberrant metabolites contributes to the immunosuppressive microenvironment that leads to cancer immune evasion. Among tumor immunosuppressive cells, myeloid-derived suppressor cells (MDSCs) are pathologically activated and extremely immunosuppressive, which are closely associated with poor clinical outcomes of cancer patients. However, the correlation between MDSCs mediated immunosuppression and particular cancer metabolism remained elusive. METHODS: Spontaneous lung adenocarcinoma and subcutaneous mouse tumor models, gas chromatography-mass spectrometry (GC-MS) and immunofluorescence assay of patient-derived lung adenocarcinoma tissues, and flow cytometry, RNA sequencing and Western blotting of immune cells, were utilized. RESULTS: Metabolite profiling revealed a significant accumulation of acetic acids in tumor tissues from both patients and mouse model, which contribute to immune suppression and cancer progression significantly through free fatty acid receptor 2 (FFAR2). Furthermore, FFAR2 is highly expressed in the myeloid-derived suppressor cells (MDSCs) from the tumor of lung adenocarcinoma (LUAD) patients which is greatly associated with poor prognosis. Surprisingly, whole or myeloid Ffar2 gene deletion markedly inhibited urethane-induced lung carcinogenesis and syngeneic tumor growth with reduced MDSCs and increased CD8+ T cell infiltration. Mechanistically, FFAR2 deficiency in MDSCs significantly reduced the expression of Arg1 through Gαq/Calcium/PPAR-γ axis, which eliminated T cell dysfunction through relieving L-Arginine consumption in tumor microenvironment. Therefore, replenishment of L-Arginine or inhibition to PPAR-γ restored acetic acids/FFAR2 mediated suppression to T cells significantly. Finally, FFAR2 inhibition overcame resistance to immune checkpoint blockade through enhancing the recruitment and cytotoxicity of tumor-infiltrating T cells. CONCLUSION: Altogether, our results demonstrate that the acetic acids/FFAR2 axis enhances MDSCs mediated immunosuppression through Gαq/calcium/PPAR-γ/Arg1 signaling pathway, thus contributing to cancer progression. Therefore, FFAR2 may serve as a potential new target to eliminate pathologically activated MDSCs and reverse immunosuppressive tumor microenvironment, which has great potential in improving clinical outcomes of cancer immunotherapy.


Assuntos
Adenocarcinoma de Pulmão , Células Supressoras Mieloides , Neoplasias , Humanos , Camundongos , Animais , Cálcio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Arginina/metabolismo , Acetatos/metabolismo , Microambiente Tumoral
8.
Cell Death Dis ; 15(1): 67, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238320

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has been shown to influence breast cancer progression, but the underlying mechanisms remain unclear. In this study, we investigated the impact of NAFLD on breast cancer tumor growth and cell viability through the potential mediator, hepatic fibroblast growth factor 21 (FGF21). Both peritumoral and systemic administration of FGF21 promoted breast cancer tumor growth, while FGF21 knockout attenuated the tumor-promoting effects of the high-fat diet. Mechanistically, exogenous FGF21 treatment enhanced the anti-apoptotic ability of breast cancer cells through STAT3 and Akt/FoXO1 signaling pathways, and mitigated doxorubicin-induced cell death. Furthermore, we observed overexpression of FGF21 in tumor tissues from breast cancer patients, which was associated with poor prognosis. These findings suggest a novel role for FGF21 as an upregulated mediator in the context of NAFLD, promoting breast cancer development and highlighting its potential as a therapeutic target for cancer treatment.


Assuntos
Neoplasias da Mama , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Feminino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias da Mama/metabolismo , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
9.
Food Chem ; 443: 138547, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271897

RESUMO

In the present study, we hypothesised that Trichosanthes kirilowii seed protein isolate (TPI) obtained by different extraction methods have distinct structure, functional attributes and volatile profiles. Alkaline-extracted isolate (AE-TPI) exhibited lower protein content and a darker colour than the other two isolates because more polyphenols and pigments were coextracted. Salt-extracted isolate (SE-TPI) and AE-TPI had higher in vitro protein digestibility than reverse micelle-extracted isolate (RME-TPI) due to higher degrees of denaturation, which enabled them to be more susceptible to proteolysis. The SE-TPI gel resulted in a stronger gel network and greater hardness than the other two isolate gels. In the volatile profile, SE-TPI (22) yielded the largest number of volatile compounds, followed by AE-TPI (20) and RME-TPI (15). The current results indicated that the structure, functional properties and volatile profiles of TPI are largely influenced by the extraction technique.


Assuntos
Trichosanthes , Trichosanthes/química , Sementes/química
10.
J Sci Food Agric ; 104(7): 4028-4038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252689

RESUMO

BACKGROUND: Enzymatic crosslinking is a method that can be used to modify Inca peanut albumin (IPA) using polyphenols, and provides desirable functionalities; however, the effect of polyphenol structures on conjugate properties is unclear. In this study, we selected four polyphenols with different numbers of phenolic hydroxyl groups [para-hydroxybenzoic acid (HBA), protocatechuic acid (PCA), gallic acid (GA), and epigallocatechin gallate (EGCG)] for covalent modification of IPA by enzymatic crosslinking, and explored the structure-function changes of the IPA-polyphenol conjugates. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed that laccase successfully promoted covalent crosslinking of IPA with polyphenols, with the order of degree of conjugation as EGCG > GA > PCA > HBA, the IPA-EGCG conjugate showed the highest polyphenol binding equivalents (98.35 g kg-1 protein), and a significant reduction in the content of free amino, sulfhydryl, and tyrosine group. The oxidation of polyphenols by laccase forms quinone or semiquinone radicals that are covalently crosslinked to the reactive groups of IPA, leading to significant changes in the secondary and tertiary structures of IPA, with spherical structures transforming into dense lamellar structures. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability and emulsification stability of IPA-EGCG conjugates improved by almost 6-fold and 2.7-fold, respectively, compared with those of unmodified IPA. CONCLUSION: These data suggest that the higher the number of polyphenol hydroxyl groups, the higher the degree of IPA-polyphenol conjugation; additionally, enzymatic crosslinking can significantly improve the functional properties of IPA. © 2024 Society of Chemical Industry.


Assuntos
Catequina , Polifenóis , Polifenóis/química , Arachis/metabolismo , Lacase/metabolismo , Fenóis , Antioxidantes/química , Catequina/química , Catálise , Ácido Gálico , Albuminas
11.
J Neurol ; 271(4): 1747-1766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286842

RESUMO

Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is an inflammatory syndrome with characteristic clinical, radiological, and pathological features, and can be effectively treated with corticosteroid-based immunotherapies. The exact pathogenesis of CLIPPERS remains unclear, and specific diagnostic biomarkers are not available. According to the 2017 diagnostic criteria, probable CLIPPERS should be considered in middle-aged patients with subacute onset of pontocerebellar symptoms and typical punctuate and curvilinear gadolinium enhancement lesions ("salt-and-pepper" appearance) located in the hindbrain (especially pons) on magnetic resonance imaging. In addition, CLIPPERS-mimics, such as central nervous system (CNS) lymphoma, and several antibody-associated autoimmune CNS diseases (e.g., myelin oligodendrocyte glycoprotein antibody-associated disease, autoimmune glial fibrillary acidic protein astrocytopathy, and anti-N-methyl-D-aspartate receptor encephalitis), should be extensively excluded. The prerequisite for definite CLIPPERS is the perivascular T-cell-predominant inflammatory infiltration observed on pathological analysis. A biopsy is strongly suggested when clinical/radiological red flags are present. Most patients with CLIPPERS respond well to corticosteroids and have a good prognosis. Long-term low-dose corticosteroid maintenance therapy or corticosteroids coupled with immunosuppressants are recommended to prevent the recurrence of the syndrome. The potential progression of CLIPPERS to lymphoma has been suggested in some cases; therefore, at least 2-year clinical and radiological follow-up is essential. Here, we critically review the recent developments and provided an update on the clinical characteristics, diagnostic criteria, differential diagnoses, and therapeutic management of CLIPPERS. We also discuss the current controversies in this context that can be resolved in future research studies.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Pessoa de Meia-Idade , Humanos , Meios de Contraste/uso terapêutico , Gadolínio , Inflamação/complicações , Esteroides/uso terapêutico , Corticosteroides/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Ponte/patologia , Neoplasias do Sistema Nervoso Central/patologia , Linfoma/complicações
12.
Int J Biol Macromol ; 261(Pt 2): 129760, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286375

RESUMO

The specific structure of Polygonatum kingianum Coll. et Hemsl polysaccharide (PKP) has been rarely reported. In this study, an inulin-type fructan PKP-1, was extracted and purified from Polygonatum kingianum Coll. et Hemsl, and its structural characteristics and antioxidants activity were evaluated. The molecular weights of PKP-1 was determined to be 4.802 kDa. Monosaccharide composition analysis evidenced that PKP-1 was composed of galactose, glucose and fructose in a molar ratio of 0.8 %:7.2 %:92.0 %. Glycosidic linkage and Nuclear Magnetic Resonance (NMR) analysis revealed that PKP-1 exhibited a primary sugar residue linkage of →1-ß-d-Fruf-2→2,6-ß-d-Fruf-1→, where ß-d-Fruf-2→ acts as the side chain and links to the C-6 position of →2,6-ß-d-Fruf-1→. In vitro antioxidant activity assays demonstrated that PKP-1 enhanced the mitigation of hepatic oxidative stress in HepG2 cells induced by free fatty acids. This effect was marked by increased enzymatic activities of superoxidase dismutase (SOD) and catalase (CAT), along with elevated glutathione (GSH) levels. These findings indicate that PKP-1 could be used as a potential natural antioxidant.


Assuntos
Polygonatum , Polygonatum/química , Polissacarídeos/química , Antioxidantes/farmacologia , Frutanos/química , Estresse Oxidativo , Glutationa
13.
Cancer Immunol Immunother ; 73(1): 13, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231412

RESUMO

BACKGROUND: Although chimeric antigen receptor T (CAR-T) cells have been proven to be an effective way of treating B cell malignancies, a lot of patients could not benefit from it because of failure in CAR-T cell manufacturing, disease progression, and unaffordable price. The study aimed to explore universal CAR-T cell products to extend the clinical accessibility. METHODS: The antitumor activity of CRISPR/Cas9-edited allogeneic anti-CD19 CAR-T (CAR-T19) cells was assessed in vitro, in animal models, and in patients with relapsed/refractory (R/R) acute B cell lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma. RESULTS: B2M-/TRAC- universal CAR-T19 (U-CAR-T19) cells exhibited powerful anti-leukemia abilities both in vitro and in animal models, as did primary CD19+ leukemia cells from leukemia patients. However, expansion, antitumor efficacy, or graft-versus-host-disease (GvHD) was not observed in six patients with R/R B cell malignancies after U-CAR-T19 cell infusion. Accordingly, significant activation of natural killer (NK) cells by U-CAR-T19 cells was proven both clinically and in vitro. HLA-A-/B-/TRAC- novel CAR-T19 (nU-CAR-T19) cells were constructed with similar tumoricidal capacity but resistance to NK cells in vitro. Surprisingly, robust expansion of nU-CAR-T19 cells, along with rapid eradication of CD19+ abnormal B cells, was observed in the peripheral blood and bone marrow of another three patients with R/R B-ALL. The patients achieved complete remission with no detectable minimal residual disease 14 days after the infusion of nU-CAR-T19 cells. Two of the three patients had grade 2 cytokine release syndrome, which were managed using an IL-6 receptor blocker. Most importantly, GvHD was not observed in any patient, suggesting the safety of TRAC-disrupted CAR-T cells generated using the CRISPR/Cas9 method for clinical application. CONCLUSIONS: The nU-CAR-T19 cells showed a strong response in R/R B-ALL. nU-CAR-T19 cells have the potential to be a promising new approach for treating R/R B cell malignancies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Linfocítica Crônica de Células B , Leucemia , Receptores de Antígenos Quiméricos , Animais , Humanos , Receptores de Antígenos Quiméricos/genética , Anticorpos , Antígenos CD19 , Linfócitos T , Antígenos HLA-A
14.
Anal Methods ; 16(5): 686-694, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205809

RESUMO

Cysteine (Cys) and homocysteine (Hcy) are important biothiols in living organisms. They play important roles in a variety of physiological and pathological processes. Therefore, it is very important to design an optical probe for the selective detection of Cys/Hcy. Herein, we report the design and synthesis of a fluorescent probe NBD-B-T based on a boron-dipyrromethene (BODIPY) structure, which showed an excellent lysosome targeting ability and an outstanding Cys/Hcy detection capacity. For NBD-B-T, the sensing group 7-nitro-2,1,3-benzoxadiazole (NBD) and the lysosomal targeting group morpholine were introduced. The results show that the NBD-B-T probe can detect Cys/Hcy with fluorescence emission turn-on performance. The low detection limits of this probe are about 76.0 nM for Hcy and 97.6 nM for Cys, respectively. The NBD-B-T probe has a low detection limit, high stability, and excellent selectivity and sensitivity. More importantly, the NBD-B-T can target lysosome, and simultaneously detect the Cys/Hcy in living cells.


Assuntos
Compostos de Boro , Cisteína , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HeLa , Lisossomos
15.
Clin Exp Immunol ; 215(1): 27-36, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37724585

RESUMO

The overlapping of two or more types of neural autoantibodies in one patient has increasingly been documented in recent years. The coexistence of myelin oligodendrocyte glycoprotein (MOG) and N-methyl-d-aspartate receptor (NMDAR) antibodies is most common, which leads to a unique condition known as the MOG antibody and NMDAR antibody overlapping syndrome (MNOS). Here, we have reviewed the pathogenesis, clinical manifestations, paraclinical features, and treatment of MNOS. Forty-nine patients with MNOS were included in this study. They were young males with a median onset age of 23 years. No tumors were observed in the patients, and 24 of them reported prodromal symptoms. The most common clinical presentations were psychiatric symptoms (35/49) and seizures (25/49). Abnormalities on magnetic resonance imaging involved the brainstem (11/49), cerebellum (9/49), and parietal lobe (9/49). Most patients mostly responded to immunotherapy and had a good long-term prognosis. However, the overall recurrence rate of MNOS was higher than that of mono antibody-positive diseases. The existence of concurrent NMDAR antibodies should be suspected in patients with MOG antibody-associated disease having psychiatric symptoms, seizures, movement disorders, or autonomic dysfunction. Similarly, serum MOG antibody testing should be performed when patients with anti-NMDAR encephalitis present with atypical clinical manifestations, such as visual impairment and limb weakness, and neuroradiological findings, such as optic nerve, spinal cord, or infratentorial involvement or meningeal enhancement. Early detection of the syndrome and prompt treatment can be beneficial for these patients, and maintenance immunosuppressive therapy is recommended due to the high overall recurrence rate of the syndrome.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato , Humanos , Masculino , Adulto Jovem , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Convulsões/complicações , Síndrome
16.
J Sci Food Agric ; 104(3): 1741-1755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37862230

RESUMO

BACKGROUND: Porcupine quills, a by-product of porcupine pork, are rich in keratin, which is an excellent source of bioactive peptides. The objective of this study was to investigate the underlying mechanism of anti-proliferation effect of porcupine quills keratin peptides (PQKPs) on MCF-7 cells. RESULTS: Results showed that PQKPs induced MCF-7 cells apoptosis by significantly decreasing the secretion level of anti-apoptosis protein Bcl-2 and increasing the secretion levels of pro-apoptosis proteins Bax, cytochrome c, caspase 9, caspase 3 and PARP. PQKPs also arrested the cell cycle at G0/G1 phase via remarkably reducing the protein levels of CDK4 and enhancing the protein levels of p53 and p21. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis identified nine peptides with molecular weights less than 1000 Da in PQKPs. Molecular docking results showed that TPGPPT and KGPAC identified from PQKPs could bind with p53 mutant and Bcl-2 protein by conventional hydrogen bonds, carbon hydrogen bonds and van der Waals force. Furthermore, the anti-proliferation impact of synthesized peptides (TPGPPT and KGPAC) was shown in MCF-7 cells. CONCLUSION: These findings indicated that PQKPs suppressed the proliferation of MCF-7 breast cancer cells by triggering apoptosis and G0/G1 cell cycle arrest. Moreover, the outcome of this study will bring fresh insights into the production and application of animal byproducts. © 2023 Society of Chemical Industry.


Assuntos
Neoplasias da Mama , Porcos-Espinhos , Humanos , Animais , Feminino , Células MCF-7 , Caspases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Porcos-Espinhos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Queratinas/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
17.
ACS Omega ; 8(43): 39984-40004, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929129

RESUMO

Combining metal and polymer into hybrid composite materials is finding increasing interest in many industries. Special attention is being paid to increase the adhesion between the metal and polymer interface. In this paper, the current research progress of surface treatment methods for improving the interfacial adhesion of stainless steel and resin is reviewed. It involves the stainless steel surface treatment method, resin surface treatment method, and adhesion test methods of stainless steel and resin. The methods of improving the interfacial adhesion of stainless steel and resin are summarized and prospected according to the research status.

18.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835990

RESUMO

Thermoplastic composite structures possess superior properties compared with thermosetting composites, including recyclability and high damage tolerance. However, the poor adhesion properties of thermoplastic composites make their joining process challenging. In this research, three bonding techniques, namely adhesive, mechanical joining, and hybrid bonding, are investigated using lap shear specimens to evaluate their mechanical properties and failure modes. The stress distributions at the joints of the three bonding techniques are analyzed by numerical simulation. The findings demonstrate that hybrid bonding enhances the strength of composite joints, albeit at the expense of some stiffness due to the presence of an open hole. This method is particularly suitable for applications that necessitate robust connections requiring high strength.

19.
Front Bioeng Biotechnol ; 11: 1203244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724095

RESUMO

Objective: This study aimed to introduce a new surgical method for the fixation of olecranon fractures, and to compare the biomechanical stability and clinical efficacy of Kirschner wire tension band and anchor loop plate (ALP) in the treatment of olecranon fractures. Methods: A finite element model was established to analyze the mechanical properties of Kirschner wire tension and anchor loop plate fixation for olecranon fracture. The clinical data of 53 patients with olecranon fractures admitted to our hospital from March 2016 to October 2021 were retrospectively analyzed. Among them, 22 cases were fixed with an anchor loop plate (ALP group), and 31 patients were fixed with the Kirschner wire tension band technique. By reviewing the medical records and follow-up results, the final elbow mobility, secondary surgery, postoperative complications and elbow function recovery Mayo score and DASH score were compared between the two groups. Results: The biomechanical analysis of the finite element model showed that under the load of 120 N, the maximum displacement of the Kirschner wire group was 1.09 times that of the ALP group, the maximum stress of the Kirschner wire group was 1.33 times that of the ALP group, and the maximum stress of the olecranon proximal bone of the Kirschner wire group was 2.17 times that of the ALP group. Under the load of 200 N, the maximum displacement of the Kirschner wire group was 1.19 times that of the ALP group. The overall maximum stress of the Kirschner wire group was 1.59 times that of the ALP group, and the maximum stress of the proximal olecranon bone of the Kirschner wire group was 1.99 times that of the ALP group. The average follow-up time of the Kirschner wire and anchor loop plate groups was similar (p > 0.05). The average age of the two groups was identical (p > 0.05). The final elbow mobility in the anchor loop plate group was significantly greater than in the Kirschner wire group (p < 0.05). The Mayo score of the anchor loop plate group was substantially higher than that of the Kirschner wire group at 3 and 12 months after operation (p < 0.05), and the DASH score was significantly lower than that of the Kirschner wire group (p < 0.05). Postoperative complications in the two groups: 1 case (4.5%) in the anchor loop plate group had difficulties with internal fixation stimulation, and no infection occurred; in the Kirschner wire group, 5 cases (16.1%) had complications of internal fixation stimulation, and 1 patient (3.2%) had an infection. Conclusion: The model of olecranon fracture fixed by anchor loop plate and Kirschner wire tension technique was tested under 120 and 200 N tension, and no damage was found, indicating that the newly designed anchor loop plate was safe in mechanical structure. The biomechanical stability of the anchor plate technique is more stable, so it is not easy to have postoperative complications such as fracture block cutting and internal fixation failure. And the secondary operation rate and elbow function have better results. This technique is an effective method for the treatment of olecranon fractures.

20.
J Cancer Res Clin Oncol ; 149(18): 16659-16668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721570

RESUMO

PURPOSE: Genome-wide association studies have identified SMAD7 as a colorectal cancer (CRC) susceptibility gene. However, its underlying mechanism has not yet been characterized. This study screened functional SNPs (fSNPs) related to colorectal cancer through Reel-seq and obtained regulatory proteins on functional SNPs. METHODS: The candidate fSNPs on the SMAD7 locus were screened by Reel-seq method. Eight SNPs such as rs8085824 were identified as functional SNPs by luciferase reporter assay and EMSA, SDCP-MS and AIDP-WB revealed that HNRNPK can specifically bind to the rs8085824-C allele. The knockdown of HNRNPK by RNAi proved that HNRNPK could affect cell function by regulating SMAD7. RESULTS: Eight functional SNPs was found on the SMAD7 locus in linkage disequilibrium (LD) with R2 > 0.8, i.e., rs12953717, rs7227023, rs34007497, rs58920878, rs8085824, rs4991143, rs4939826, and rs7227023. We also identified allele-imbalanced binding of HNRNPK to rs8085824, H1-3 to rs12953717, THOC6 to rs7227023, and DDX21 to rs58920878. Further functional analysis revealed that these proteins are the regulatory proteins that modulate the expression of SMAD7 in the human colorectal cancer cell line DLD1. In particular, we discovered that siRNA knockdown of HNRNPK inhibits cell proliferation and cell clonal formation by downregulating SMAD7, as the decreased cell proliferation and cell clonal formation in the siRNA HNRNPK knockdown cells was restored by SMAD7 overexpression. CONCLUSION: Our findings reveal a mechanism which underlies the contribution of the fSNP rs8085824 on the SMD7 locus to CRC susceptibility.


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Humanos , Estudo de Associação Genômica Ampla , Neoplasias Colorretais/genética , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno , Proteína Smad7/genética , RNA Helicases DEAD-box/genética , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA