Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730776

RESUMO

As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.

2.
ACS Appl Mater Interfaces ; 15(23): 28358-28369, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259980

RESUMO

Explosives can be analyzed for their content by detecting the photolytic gaseous byproducts. However, to prevent electrostatic sparking, explosives are frequently preserved in conditions with low temperatures and high humidity, impeding the performance of gas detection. Thus, it has become a research priority to develop gas sensors that operate at ambient temperature and high humidity levels in the realm of explosive breakdown gas-phase detection. In this work, 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer-functionalized tin diselenide (APTES-SnSe2) nanosheets were synthesized via a facile solution stirring strategy, resulting in a room-temperature NO2 sensor with improved sensitivity and humidity tolerance. The APTES-SnSe2 sensor with moderate functionalization time outperforms the pure SnSe2 sensor in terms of the response value (317.51 vs 110.98%) and response deviation (3.11 vs 24.13%) under humidity interference to 500 ppb NO2. According to density functional theory simulations, the stronger adsorption of terminal amino groups of the APTES molecules to NO2 molecules and stable adsorption energy in the presence of H2O are the causes of the improved sensing capabilities. Practically, the APTES-SnSe2 sensor achieves accurate detection of photolysis gases from trace nitro explosives octogen, pentaerythritol tetranitrate, and trinitrotoluene at room temperature and various humidity levels. This study provides a potential strategy for the construction of gas sensors with high responsiveness and antihumidity capabilities to identify explosive content in harsh environments.

3.
iScience ; 26(4): 106387, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37034984

RESUMO

Chemiresistive gas sensors generally surfer from low selectivity, inferior anti-humidity, low response signal or signal-to-noise ratio, severely limiting the precise detection of chemical agents. Herein, we exploit high-performance gas sensors based on topological insulator Bi2Se3 that is distinguished from conventional materials by robust metallic surface states protected by time-reversal symmetry. In the presence of Se vacancies, Bi2Se3 nanosheets exhibit excellent gas sensing capability toward NO2, with a high response of 93% for 50 ppm and an ultralow theoretical limit of detection concentration about 0.06 ppb at room temperature. Remarkably, Bi2Se3 demonstrates ultrahigh anti-humidity interference characteristics, as the response with standard deviation of only 3.63% can be achieved in relative humidity range of 0-80%. These findings are supported by first-principles calculations, with analyses on adsorption energy and charge transfer directly revealing the anti-humidity and selectivity. This work may pave the way for implementation of exotic quantum states for intelligent applications.

4.
J Hazard Mater ; 416: 126171, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492947

RESUMO

The gaseous volatile organic compounds (VOCs) sensors with high-selectivity and low-power consumption have been expected for practical applications in environmental monitoring and disease diagnosis. Herein, we demonstrate a room-temperature VOCs gas sensor with enhanced performance based on Ti3C2Tx-TiO2 nanocomposites. The Ti3C2Tx-TiO2 nanocomposites with regular morphology are successfully synthesized via a facile one-step hydrothermal synthesis strategy by using Ti3C2Tx itself as titanium source. Attributed to the formation of interfacial heterojunctions and the modulation of carrier density, the Ti3C2Tx-TiO2 sensor exhibits about 1.5-12.6 times enhanced responses for the detection of various VOCs at room temperature than pure MXene sensor. Moreover, the nanocomposite sensor has better response to hexanal, both an air pollutant and a typical lung cancer biomarker. The gas response of the Ti3C2Tx-TiO2 sensor towards 10 ppm hexanal is about 3.4%. The hexanal gas sensing results display that the nanocomposite sensor maintains a high signal-to-noise ratio and the lower detection limit to hexanal gas is as low as 217 ppb. Due to the low power consumption and easy fabrication process, the Ti3C2Tx-TiO2 nanocomposite sensor is promising for application in IoT environmental monitoring as well as real-time health monitoring.


Assuntos
Nanocompostos , Compostos Orgânicos Voláteis , Gases , Temperatura , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA