Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
BMC Cancer ; 24(1): 703, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849717

RESUMO

Immunodeficient murine models are usually used as the preclinical models of osteosarcoma. Such models do not effectively simulate the process of tumorigenesis and metastasis. Establishing a suitable animal model for understanding the mechanism of osteosarcoma and the clinical translation is indispensable. The UMR-106 cell suspension was injected into the marrow cavity of Balb/C nude mice. Tumor masses were harvested from nude mice and sectioned. The tumor fragments were transplanted into the marrow cavities of SD rats immunosuppressed with cyclosporine A. Through muti-rounds selection in SD rats, we constructed orthotopic osteosarcoma animal models using rats with intact immune systems. The primary tumor cells were cultured in-vitro to obtain the immune-tolerant cell line. VX2 tumor fragments were transplanted into the distal femur and parosteal radius of New Zealand white rabbit to construct orthotopic osteosarcoma animal models in rabbits. The rate of tumor formation in SD rats (P1 generation) was 30%. After four rounds of selection and six rounds of acclimatization in SD rats with intact immune systems, we obtained immune-tolerant cell lines and established the orthotopic osteosarcoma model of the distal femur in SD rats. Micro-CT images confirmed tumor-driven osteolysis and the bone destruction process. Moreover, the orthotopic model was also established in New Zealand white rabbits by implanting VX2 tumor fragments into rabbit radii and femurs. We constructed orthotopic osteosarcoma animal models in rats with intact immune systems through muti-rounds in-vivo selection and the rabbit osteosarcoma model.


Assuntos
Neoplasias Ósseas , Modelos Animais de Doenças , Osteossarcoma , Animais , Osteossarcoma/patologia , Osteossarcoma/imunologia , Coelhos , Ratos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/imunologia , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Ratos Sprague-Dawley , Microtomografia por Raio-X , Camundongos Endogâmicos BALB C , Imunocompetência , Humanos , Transplante de Neoplasias , Fêmur/patologia , Fêmur/diagnóstico por imagem , Masculino
2.
ACS Biomater Sci Eng ; 10(4): 2200-2211, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38447138

RESUMO

In the clinic, inactivation of osteosarcoma using microwave ablation would damage the periosteum, resulting in frequent postoperative complications. Therefore, the development of an artificial periosteum is crucial for postoperative healing. In this study, we prepared an artificial periosteum using silk fibroin (SF) loaded with stromal cell-derived factor-1α (SDF-1α) and calcitonin gene-related peptide (CGRP) to accelerate bone remodeling after the microwave ablation of osteosarcoma. The prepared artificial periosteum showed a sustained release of SDF-1α and CGRP after 14 days of immersion. In vitro culture of rat periosteal stem cells (rPDSCs) demonstrated that the artificial periosteum is favorable for cell recruitment, the activity of alkaline phosphatase, and bone-related gene expression. Furthermore, the artificial periosteum improved the tube formation and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs). In an animal study, the periosteum in the femur of a rabbit was inactivated through microwave ablation and then removed. The damaged periosteum was replaced with the as-prepared artificial periosteum and favored bone regeneration. In all, the designed dual-factor-loaded artificial periosteum is a promising strategy to replace the damaged periosteum in the therapy of osteosarcoma for a better bone-rebuilding process.


Assuntos
Osteossarcoma , Periósteo , Ratos , Humanos , Animais , Coelhos , Quimiocina CXCL12/genética , Quimiocina CXCL12/farmacologia , Peptídeo Relacionado com Gene de Calcitonina , Células Endoteliais , Regeneração Óssea
3.
Food Chem ; 444: 138597, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38310783

RESUMO

Polar lipids have biosynthetic pathways which intersect and overlap with triacylglycerol biosynthesis; however, polar lipids have not been well characterized in the developing endosperms of oat with high oil accumulation. The polar lipids in endosperms of oat and wheat varieties having different oil contents were analyzed and compared at different developmental stages. Our study shows that the relative contents of polar lipid by mass were decreased more slowly in wheat than in oat. Phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, which showed similar abundance and gradual decreases during endosperm development in oat and wheat, while lysophospholipids were noticeably higher in oat. Monogalactosyldiacylglycerol showed a gradual increase in wheat and a decrease in oat during endosperm development. The relative contents of some polar lipid species and their unsaturation index were significantly different in their endosperms. These characteristics of polar lipids might indicate an adaption of oat to accommodate oil accumulation.


Assuntos
Avena , Endosperma , Endosperma/metabolismo , Avena/metabolismo , Triticum , Lipidômica , Fosfatidilcolinas/metabolismo
4.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
5.
Biomater Sci ; 12(5): 1211-1227, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38240342

RESUMO

Regulating the wound microenvironment to promote proliferation, vascularization, and wound healing is challenging for hemostats and wound dressings. Herein, polypeptide composite hydrogels have been simply fabricated by mixing a smaller amount of metal ion-coordinated nanoparticles into dopamine-modified poly(L-glutamic acid) (PGA), which had a microporous size of 10-16 µm, photothermal conversion ability, good biocompatibility, and multiple biological activities. In vitro scratch healing of fibroblast L929 cells and the tube formation of HUVECs provide evidence that the PGA composite hydrogels could promote cell proliferation, migration, and angiogenesis with the assistance of mild photothermia. Moreover, these composite hydrogels plus mild photothermia could effectively eliminate reactive oxygen species (ROS), alleviate inflammation, and polarize the pro-inflammatory M1 macrophage phenotype into the pro-healing M2 phenotype to accelerate wound healing, as assessed by means of fluorescent microscopy, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, a rat liver bleeding model illustrates that the composite hydrogels reduced the blood loss ratio to about 10% and shortened the hemostasis time to about 25 s better than commercial chitosan-based hemostats. Furthermore, the full-thickness rat skin defect models showcase that the composite hydrogels plus mild photothermia could proheal wounds completely with a fast healing rate, optimal neovascularization, and collagen deposition. Therefore, the biodegradable polypeptide PGA composite hydrogels are promising as potent wound hemostats and dressings.


Assuntos
Ácido Glutâmico , Nanopartículas , Ratos , Animais , Ácido Glutâmico/farmacologia , Hidrogéis/farmacologia , Cicatrização , Hemostasia , Peptídeos/farmacologia , Antibacterianos/farmacologia
6.
Adv Healthc Mater ; 13(6): e2303308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924332

RESUMO

Despite the intense progress of photodynamic and chemotherapy, however, they cannot prevent solid tumor invasion, metastasis, and relapse, along with inferior efficacy and severe side effects. The hypoxia-responsive nanoprodrugs integrating photodynamic functions are highly sought to address the above-mentioned problems and overcome the tumor hypoxia-reduced efficacy. Herein, a hypoxia-responsive tetrameric supramolecular polypeptide nanoprodrug (SPN-TAPP-PCB4) is constructed from the self-assembly of tetrameric porphyrin-central poly(l-lysine-azobenzene-chlorambucil) (TAPP-(PLL-Azo-CB)4) and an anionic water-soluble [2]biphenyl-extended-pillar[6]arene (AWBpP6) via the synergy of hydrophobic, π-π stacking, and host-guest interactions. Upon laser irradiation, the central TAPP can convert oxygen to generate single oxygen (1 O2 ) to kill tumor cells. Furthermore, under the acidic and PDT-aggravated hypoxia tumor cell microenvironment, SPN-TAPP-PCB4 is rapidly disassembled, and then efficiently releases activated CB through the hypoxic-responsive cleavage of azobenzene linkages. Both in vitro and in vivo biological studies showcase synergistic cancer-killing actions between photodynamic therapy (PDT) and chemotherapy (CT) with negligible toxicity. Consequently, this supramolecular polypeptide nanoprodrug offers an effective strategy to design a hypoxia-responsive nanoprodrug for a potential combo PDT-CT transition.


Assuntos
Hipóxia , Oxigênio , Humanos , Compostos Azo , Peptídeos
7.
Mil Med Res ; 10(1): 66, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111039

RESUMO

BACKGROUND: The essential roles of platelets in thrombosis have been well recognized. Unexpectedly, thrombosis is prevalent during thrombocytopenia induced by cytotoxicity of biological, physical and chemical origins, which could be suffered by military personnel and civilians during chemical, biological, radioactive, and nuclear events. Especially, thrombosis is considered a major cause of mortality from radiation injury-induced thrombocytopenia, while the underlying pathogenic mechanism remains elusive. METHODS: A mouse model of radiation injury-induced thrombocytopenia was built by exposing mice to a sublethal dose of ionizing radiation (IR). The phenotypic and functional changes of platelets and megakaryocytes (MKs) were determined by a comprehensive set of in vitro and in vivo assays, including flow cytometry, flow chamber, histopathology, Western blotting, and chromatin immunoprecipitation, in combination with transcriptomic analysis. The molecular mechanism was investigated both in vitro and in vivo, and was consolidated using MK-specific knockout mice. The translational potential was evaluated using a human MK cell line and several pharmacological inhibitors. RESULTS: In contrast to primitive MKs, mature MKs (mMKs) are intrinsically programmed to be apoptosis-resistant through reprogramming the Bcl-xL-BAX/BAK axis. Interestingly, mMKs undergo minority mitochondrial outer membrane permeabilization (MOMP) post IR, resulting in the activation of the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway via the release of mitochondrial DNA. The subsequent interferon-ß (IFN-ß) response in mMKs upregulates a GTPase guanylate-binding protein 2 (GBP2) to produce large and hyperreactive platelets that favor thrombosis. Further, we unmask that autophagy restrains minority MOMP in mMKs post IR. CONCLUSIONS: Our study identifies that megakaryocytic mitochondria-cGAS/STING-IFN-ß-GBP2 axis serves as a fundamental checkpoint that instructs the size and function of platelets upon radiation injury and can be harnessed to treat platelet pathologies.


Assuntos
Lesões por Radiação , Trombocitopenia , Trombose , Humanos , Animais , Camundongos , Megacariócitos/metabolismo , Megacariócitos/patologia , Trombocitopenia/etiologia , Apoptose , Nucleotidiltransferases/metabolismo , Trombose/metabolismo
8.
Quant Imaging Med Surg ; 13(10): 7294-7303, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869348

RESUMO

Background: The combination of computed tomography angiography (CTA) and computed tomography perfusion (CTP) evaluation of cerebral perfusion status and vascular conditions can improve the diagnostic accuracy of infarction, ischemia, and vascular occlusion in stroke patients, as well as a comprehensive assessment of cerebral edema, collateral circulation, and blood perfusion in the lesion area. However, the consequent radiation safety and contrast agent nephropathy have aroused increasing concern. The purpose of this study was to assess the image quality and diagnostic accuracy of CTA images derived from CTP data, and to explore the feasibility of replacing conventional CTA. Methods: A total of 31 consecutive patients with suspected acute ischemic stroke were retrospectively analyzed. All patients underwent head and neck CTA and brain CTP examinations. All the CTP images were transmitted to the ShuKun artificial intelligence system, which reconstructs CTA derived from CTP (CTA-DF-CTP). The images were divided into 2 groups, including CTA-DF-CTP (Group A) and conventional CTA (Group B). The CT attenuation values, subjective image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), image quality, CT volume dose index (CTDIvol), dose length product (DLP), and effective radiation dose (ED) were compared between the 2 groups. Moreover, the consistency of vascular stenosis and stenosis degree between the 2 groups were measured and evaluated. Results: There were no significant differences in image noise, SNR, or CNR between Groups A and B (P>0.05). The CT attenuation values of the arteries were higher in Group A than in B [internal carotid artery (ICA) =548±112 vs. 454±85 Hounsfield units (HU), middle cerebral artery (MCA) =453±118 vs. 388±70 HU, and basilar artery (BA) =431±99 vs. 360±83 HU] (P<0.01). The image quality of the 2 groups met the requirement of clinical diagnosis (4.97±0.18 vs. 4.94±0.25). No significant difference was found in subjective evaluation (P>0.05). In Group A compared with Group B, the following reductions were observed: CTDIvol (10.7%; 100.8 vs. 112.9 mGy), DLP (23.0%; 1,613±0 vs. 2,093±88 mGy·cm), and ED (23.0%; 5.00±0.00 vs. 6.49±0.27 mSv). Conclusions: CTA-DF-CTP data provide diagnostic accuracy and image quality similar to those of conventional CTA of head and neck CTA.

9.
Mol Biol Rep ; 50(10): 8015-8023, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541997

RESUMO

BACKGROUND: The tumor microenvironment contains chemokines that play a crucial role in various processes, such as tumorigenesis, inflammation, and therapy resistance, in different types of cancer. CXCL5 is a significant chemokine that has been shown to promote tumor proliferation, invasion, angiogenesis, and therapy resistance when overexpressed in various types of cancer. This research aims to investigate the impact of CXCL5 on the biological functions of glioblastoma (GBM). METHODS: The TCGA GBM and GEO databases were utilized to perform transcriptome microarray analysis and oncogenic signaling pathway analysis of CXCL5 in GBM. Validation of CXCL5 expression was performed using RT-qPCR and Western Blot. The impact of CXCL5 on cell proliferation, tumorigenesis, and angiogenesis in GBM was assessed through various methods, including cell proliferation assay, cloning assay, intracranial xenograft tumor models, and tube formation assay. Clinical prognosis was evaluated in 59 samples of gliomas with varying degrees of malignancy (grades 2, 3, and 4) and the TCGA GBM database, based on CXCL5 expression levels. The activities of the JAK-STAT and NF-κB signaling pathways were detected using Western Blot. RESULTS: The expression of CXCL5 was highly enriched in GBM. Moreover, the inhibition of CXCL5 showed a significant efficacy in suppressing cellular proliferation and angiogenesis, resulting in extended survival rates in xenograft mouse models in comparison to the control group. Notably, pretreatment with dapsone exhibited a reversal of the impact of CXCL5 on the formation of colonies and tubes in GBM cells. Elevated expression of CXCL5 was correlated with poor outcomes in GBM patients. Furthermore, the overexpression of CXCL5 has been associated with the activation of JAK-STAT and NF-κB signaling pathways. CONCLUSIONS: CXCL5 plays an important role in tumorigenesis and angiogenesis, indicating the potential for novel therapies targeting CXCL5 in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Glioblastoma/metabolismo , Transdução de Sinais , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo
10.
RSC Adv ; 13(34): 24064-24070, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577086

RESUMO

The simultaneous removal of toxic, carcinogenic organic dyes and metal ions from water by one material offers significant advantages when fast, facile, and robust water purification is required. Ionic covalent organic frameworks (ICOFs) have the combined properties of COFs and ion exchange resins and are expected to achieve simultaneous capture of heavy metal ions and organic dyes from water. Herein, a novel guanidinium-based ICOF was synthesized using a solvothermal method. Benefitting from the cationic character, porosity and nanoscale pore size of ICOFs, the adsorbent exhibited high simultaneous adsorption capacities of 290 mg g-1 and 158 mg g-1 for methyl orange (MO) and Cr(vi), respectively, and retained more than 90% adsorption capacity after six adsorption-desorption cycles. In addition, based on dual control of size-exclusion and charge-selection, precisely selective adsorption is achieved towards diverse mixed anionic and cationic pollutants. This strategy offers a practical solution for COFs to confront environmental pollution issues.

11.
Biomater Sci ; 11(16): 5674-5679, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439102

RESUMO

Moderate oxygen (O2) supply and uneven distribution of oxygen at the tumor site usually hinder the therapeutic efficacy of hypoxia-activated prodrugs. In this report, we designed a ferrocene-containing supramolecular nanomedicine (PFC/GOD-TPZ) with the PEG corona and disulfide-bond cross-linked core to co-encapsulate 4-di-N-oxide tirapazamine (TPZ) and glucose oxidase (GOD). The PEG corona of PFC/GOD-TPZ could be weakly acidic tumor pH-responsively detached for an enhanced cellular internalization, while the disulfide-bond cross-linked core could be cleavaged by intracellular glutathione (GSH) to present a GSH-triggered drug-release behavior. Subsequently, the cascade reactions, including catalytic reactions among the released GOD, glucose, and O2 to generate H2O2 and the subsequent Fenton reaction between ferrocene and H2O2, occurred. With the depletion of O2, the non-toxic TPZ was activated and converted into the cytotoxic therapeutic agent benzotriazinyl (BTZ) radical under the exacerbated hypoxic microenvironment. Collectively, the PFC/GOD-TPZ provides a promising strategy for effective combination therapy of GOD-mediated starvation therapy, chemodynamic therapy (CDT), and hypoxia-activated chemotherapy (CT).


Assuntos
Antineoplásicos , Neoplasias , Humanos , Nanomedicina , Metalocenos/farmacologia , Metalocenos/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Tirapazamina/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxigênio , Hipóxia/tratamento farmacológico , Glutationa , Dissulfetos/farmacologia , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Eur J Gastroenterol Hepatol ; 35(8): 843-847, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37395236

RESUMO

OBJECTIVE: This study aimed to investigate the clinical value of combined serum matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) for the prognosis of perianal fistula patients. METHODS: Patients diagnosed and treated for perianal fistula by minimally invasive surgery (MIS) were enrolled. The concentrations of serum MMP-2, MMP-9 and TIMP-1 were measured at 24 h after surgery. Different levels of wound secretion, growth of granulation tissue and wound pain were used as criteria to evaluate surgical incision healing. The receiver operating characteristic curve was used to analyze the predicted assessment value. RESULTS: The concentrations of serum MMP-2 and MMP-9 were significantly higher, while the concentrations of serum TIMP-1 at 24 h after surgery were significantly lower in the poor healing group than in the good healing group. It was further found that high levels of serum MMP-2 and MMP-9 were risk factors for poor healing, while high concentrations of serum TIMP-1 at 24 h after surgery were protective factors for poor healing. CONCLUSION: High concentrations of serum MMP-2 and MMP-9 and low concentrations of serum TIMP at 24 h after surgery are risk factors for poor healing in perianal fistula patients who receive MIS, and the combined test has a higher predictive value.


Assuntos
Fístula , Inibidor Tecidual de Metaloproteinase-1 , Humanos , Metaloproteinase 9 da Matriz , Metaloproteinase 2 da Matriz , Prognóstico , Procedimentos Cirúrgicos Minimamente Invasivos
13.
Adv Healthc Mater ; 12(18): e2202668, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36857811

RESUMO

Efficient delivery of cargo into target cells is a formidable challenge in modern medicine. Despite the great promise of biomimetic hydroxyapatite (HA) particles in tissue engineering, their potential applications in bone tumor therapy, particularly their structure-function relationships in cargo delivery to target cells, have not yet been well explored. In this study, biomimetic multifunctional composite microparticles (Bm-cMPs) are developed by integrating an amphiphilic prodrug of curcumin with hierarchically structured HA microspheres (Hs-hMPs). Then, the effects of the hierarchical structure of vehicles on the integration and delivery of cargo as well as the anti-osteosarcoma (OS) effect of the composite are determined. Different hierarchical structures of the vehicles strongly influence the self-assembly behavior of the prodrug. The flake-like crystals of Hs-hMPs enable the highest loading capacity and enhance the stability of the cargo. Compared to the normal cells, OS cells exhibit 3.56-times better uptake of flake-like Hs-hMPs, facilitating the selective anti-tumor effect of the prodrug. Moreover, Bm-cMPs suppress tumor growth and metastasis by promoting apoptosis and inhibiting cell proliferation and tumor vascularization. The findings shed light on the potential application of Bm-cMPs and suggest a feasible strategy for developing an effective targeted therapy platform using hierarchically structured minerals for OS treatment.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos , Durapatita , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia
14.
Clin Exp Med ; 23(6): 2473-2485, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36773211

RESUMO

Neoadjuvant therapy (NAT) for pancreatic cancer (PC) has achieved certain results. This article was aimed to analyze the trends in NAT in PC over the past 20 years using bibliometric analysis and visualization tools to guide researchers in exploring future research hotspots. Articles related to NAT for PC were retrieved from the Web of Science Core Collection for the period 2002-2021. The information was analyzed and visualized using VOSviewer, Citespace, Microsoft Excel and R software. The number of articles per year has continued to increase over the past 20 years. Of the 1,598 eligible articles, the highest number was from the United States (760), and an analysis of institutions indicated that the University of Texas System (150) had the highest number of articles. Matthew H. G. Katz had the highest number of citations and the highest H-index. "Pancreatic cancer" (981), "Resection" (623), "Cancer" (553), "Neoadjuvant therapy" (509) and "Survival" (484) were the top five ranked keywords. Combined with the keywords-cluster analysis and citation burst analysis, current research hotspots were the optimal NAT regimen, NAT response assessment, NAT for resectable PC and management of complications. NAT has received increasing attention in the field of PC over the past 20 years, but greater collaboration between countries and additional multicenter randomized clinical trials are needed. Overall, we have revealed current research hotspots and provided valuable information for the choice of future research directions.


Assuntos
Terapia Neoadjuvante , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Bibliometria , Neoplasias Pancreáticas
15.
Small ; 19(7): e2205414, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36504423

RESUMO

Osteosarcoma (OS) is the most serious bone malignancy, and the survival rate has not significantly improved in the past 40 years. Thus, it is urgent to develop a new strategy for OS treatment. Chemodynamic therapy (CDT) as a novel therapeutic method can destroy cancer cells by converting endogenous hydrogen peroxide (H2 O2 ) into highly toxic hydroxyl radicals (·OH). However, the therapeutic efficacy of CDT is severely limited by the low catalytic efficiency and overexpressed glutathione (GSH). Herein, an excellent nanocatalytic platform is constructed via a simple solvothermal method using F127 as a soft template to form the hollow copper ferrite (HCF) nanoparticle, followed by the coating of polydopamine on the surface and the loading of doxorubicin (DOX). The Fe3+ and Cu2+ released from HCF@polydopamine (HCFP) can deplete GSH through the redox reactions, and then trigger the H2 O2 to generate ·OH by Fenton/Fenton-like reaction, resulting in enhanced CDT efficacy. Impressively, the photothermal effect of HCFP can further enhance the efficiency of CDT and accelerate the release of DOX. Both in vitro and in vivo experiments reveal that the synergistic chemodynamic/photothermal/chemo-therapy exhibits a significantly enhanced anti-OS effect. This work provides a promising strategy for OS treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cobre , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Peróxido de Hidrogênio , Glutationa , Microambiente Tumoral
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(10): 1130-1135, 2022 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-36305114

RESUMO

OBJECTIVES: To study the level of serum vitamin K2 (VitK2) and its association with bone metabolism markers osteocalcin (OC), type I procollagen amino-terminal peptide (PINP), and type I collagen carboxy-terminal peptide (CTX) in children. METHODS: A prospective analysis was performed on 1 732 children who underwent routine physical examination from October 2020 to October 2021. The serum levels of VitK2 and 25-hydroxy vitamin D [25(OH)D] were measured. According to age, they were divided into four groups: <1 year, 1-3 years group, >3-6 years group, and >6-14 years. A total of 309 children with 25(OH)D≥50 nmol/L were screened out, and serum levels of OC, PINP, and CTX were measured to investigate the correlation of the serum levels of OC, PINP, and CTX with serum VitK2 levels in different age groups. RESULTS: The prevalence rate of serum VitK2 deficiency was 52.31% (906/1 732). The VitK2 deficiency group had higher prevalence rates of overweight/obesity and growth pain (≥3 years of age) than the normal VitK2 group (P<0.05). There were differences in the prevalence rate of serum VitK2 deficiency (P<0.0083) and the serum level of VitK2 (P<0.05) between the 1-3 years group and the >6-14 years group. The <1 year group had a higher serum level of CTX and a lower serum level of PINP than the >3-6 years group and the >6-14 years group (P<0.05). The <1 year group had a lower serum level of OC than the >6-14 years group (P<0.05). Serum VitK2 level was positively correlated with OC level (rs=0.347, P<0.01), and CTX level was negatively correlated with PINP level (rs=-0.317, P<0.01). CONCLUSIONS: Serum VitK2 deficiency may be associated with overweight/obesity. Serum VitK2 may affect the level of OC and even bone health.


Assuntos
Osso e Ossos , Obesidade , Sobrepeso , Vitamina K , Criança , Humanos , Lactente , Biomarcadores/metabolismo , Colágeno Tipo I/metabolismo , Obesidade/complicações , Osteocalcina/metabolismo , Sobrepeso/complicações , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Vitamina K/sangue , Pré-Escolar , Adolescente , Osso e Ossos/metabolismo
17.
J Mater Chem B ; 10(32): 6181-6186, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35894857

RESUMO

A kind of supramolecular polypeptide nanomedicine (BPC/DOX-ICG) was constructed with an anionic water-soluble [2]biphenyl-extended-pillar[6]arene (AWBpP6), and pyridinium-terminal- and S-nitrosothiol (SNO)-modified polypeptide (PPNC) via host-guest interactions to co-deliver doxorubicin (DOX) and indocyanine green (ICG) for drug resistance reversal. Upon near-infrared (NIR) irradiation, the NO generation could down-regulate the P-glycoprotein (P-gp) expression level to reverse multidrug resistance (MDR). Subsequently, the resulting reverse MDR could sensitize the free DOX and assist photothermal therapy (PTT) to enhance the tumoricidal potential. This supramolecular polypeptide nanomedicine provides an effective strategy for the multimodal synergistic therapies of photothermal therapy, NO generation therapy, and chemotherapy (i.e., PTT-NO-CT) to overcome MDR.


Assuntos
Hipertermia Induzida , Fototerapia , Compostos de Bifenilo , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Hipertermia Induzida/métodos , Verde de Indocianina/química , Nanomedicina , Óxido Nítrico/farmacologia , Peptídeos/química , Fototerapia/métodos
18.
J Immunol Res ; 2022: 1590717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769513

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy with poor prognosis worldwide. Emerging evidences demonstrated critical roles of lipid de novo synthesis in HCC progression, yet its regulatory mechanisms are not fully understood. Herein, we found that tuftelin 1 (TUFT1), an acidic phosphorylated glycoprotein with secretory capacity, was significantly upregulated in HCC and had an excellent correlation with patient survival and malignancy features. Through database mining and experimental validation, we found that TUFT1 was associated with fatty acid metabolism and promoted lipid accumulation in HCC cells. Further, we found that TUFT1 can interact with CREB1, a transcription factor for hepatic lipid metabolism, and regulate its activity and the transcriptions of key enzymes for lipogenesis. TUFT1 promoted HCC cell proliferation significantly, which was partially reversed by treatment of an inhibitor of CREB1, KG-501. Moreover, TUFT1 promoted the capacity of HCC cell invasion in vitro, which was likely mediated by its association with zyxin, a zinc-binding phosphoprotein responsible for the formation of fully mature focal adhesions on extracellular matrix. We found that TUFT1 can interact with ZYX and inhibit its expression and recruitments to focal complexes in HCC cells. Collectively, our study uncovered new regulatory mechanisms of TUFT1-mediated lipogenesis, cell proliferation, and invasion.


Assuntos
Carcinoma Hepatocelular , Proteínas do Esmalte Dentário , Adesões Focais , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas do Esmalte Dentário/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Humanos , Lipogênese , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
19.
Biomacromolecules ; 23(6): 2655-2666, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35583462

RESUMO

Owing to having a unique mechanism to kill cancer cells via the membrane accumulation of lipid peroxide (LPO) and the downregulation of glutathione peroxidase-4 (GPX-4), the ferroptosis therapy (FT) of tumors based on the Fenton reaction of iron nanoparticles has been receiving much attention in the past decade; however, there are some hurdles including the uncontrollable release of iron ions, slower kinetics of the intracellular Fenton reaction, and poor efficacy of FT that need to be overcome. Considering cooperative coordination of a multivalent thiol-pendant polypeptide ligand with iron ions, we put forward a facile strategy for constructing the iron-coordinated nanohybrid of methacryloyloxyethyl phosphorylcholine-grafted polycysteine/iron ions/tannic acid (i.e., PCFT), which could deliver a higher concentration of iron ions into cells. The dynamic and unsaturated coordination in PCFT is favorable for the intracellular stimuli-triggered release and fast Fenton reaction to realize efficient FT, while its intrinsic photothermia would boost the Fenton reaction to induce a synergistic effect between FT and photothermal therapy (PTT). Both immunofluorescence analyses of reactive oxygen species (ROS) and LPO confirmed that the intracellular Fenton reaction resulted in efficient FT, during which process the photothermia greatly boosted ferroptosis, and the Western blot assay corroborated that the expression level of GPX-4 was downregulated by FT and highly degraded by the photothermia to induce synergistic PTT-FT in vitro. Excitingly, by a single intravenous dose of PCFT plus one NIR irradiation, in vivo PTT-FT treatment completely eradicated 4T1 tumors without skin scar and tumor recurrence for 16 days, demonstrating prominent antitumor efficacy, as evidenced by the GPX-4, H&E, and TUNEL assays.


Assuntos
Ferroptose , Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Ferro , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Terapia Fototérmica , Taninos
20.
Gene ; 827: 146455, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395368

RESUMO

Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation. Skeletal muscle stem cells, termed satellite cells (SCs), proliferate to repair injured muscle. To identify the molecular mechanism of regeneration after muscle injury as well as the genes related to muscle development in fish, in this study, the immunohistochemistry and the high-throughput RNA sequencing (RNA-seq) analysis were performed after Megalobrama amblycephala muscle was injured by needle stab. The results showed that paired box7-positive (Pax7+) SCs increased, and peaked at 96 to 144 h-post injury (hpi). The 6729 differentially expressed genes (DEGs), including 2125 up-regulated and 4604 down-regulated genes were found. GO terms significantly enriched by DEGs contained intercellular connections, signaling transduction and enzyme activity. KEGG enrichment analysis showed that most of the pathways were related to immunity, metabolism and cells related molecules, including actin skeleton regulation, Epstein Barr virus infection and plaque adhesion. The WGCNA results revealed that actin cytoskeleton and lipid metabolism related genes probably played crucial roles during repair after muscle injury. Collectively, all these results will provide new insights into the molecular mechanisms underlying muscle injury repair of fish.


Assuntos
Cyprinidae , Cipriniformes , Infecções por Vírus Epstein-Barr , Animais , Cyprinidae/genética , Cyprinidae/metabolismo , Cipriniformes/genética , Infecções por Vírus Epstein-Barr/metabolismo , Perfilação da Expressão Gênica/métodos , Herpesvirus Humano 4 , Músculo Esquelético , Músculos/metabolismo , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA