Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481281

RESUMO

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Fototerapia/métodos , Colágeno , Linhagem Celular Tumoral , Microambiente Tumoral
2.
J Nanobiotechnology ; 22(1): 95, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448959

RESUMO

BACKGROUND: The prognosis for hepatocellular carcinoma (HCC) remains suboptimal, characterized by high recurrence and metastasis rates. Although metalloimmunotherapy has shown potential in combating tumor proliferation, recurrence and metastasis, current apoptosis-based metalloimmunotherapy fails to elicit sufficient immune response for HCC. RESULTS: A smart responsive bimetallic nanovaccine was constructed to induce immunogenic cell death (ICD) through pyroptosis and enhance the efficacy of the cGAS-STING pathway. The nanovaccine was composed of manganese-doped mesoporous silica as a carrier, loaded with sorafenib (SOR) and modified with MIL-100 (Fe), where Fe3+, SOR, and Mn2+ were synchronized and released into the tumor with the help of the tumor microenvironment (TME). Afterward, Fe3+ worked synergistically with SOR-induced immunogenic pyroptosis (via both the classical and nonclassical signaling pathways), causing the outflow of abundant immunogenic factors, which contributes to dendritic cell (DC) maturation, and the exposure of double-stranded DNA (dsDNA). Subsequently, the exposed dsDNA and Mn2+ jointly activated the cGAS-STING pathway and induced the release of type I interferons, which further led to DC maturation. Moreover, Mn2+-related T1 magnetic resonance imaging (MRI) was used to visually evaluate the smart response functionality of the nanovaccine. CONCLUSION: The utilization of metallic nanovaccines to induce pyroptosis-mediated immune activation provides a promising paradigm for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Nanovacinas , Carcinoma Hepatocelular/terapia , Piroptose , Imunoterapia , Microambiente Tumoral
3.
Adv Sci (Weinh) ; 11(15): e2306031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342617

RESUMO

Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Trifosfato de Adenosina , Morte Celular , Mitomicina , Microambiente Tumoral
4.
Adv Mater ; : e2313029, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353366

RESUMO

Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has emerged as an efficient strategy to improve the therapeutic outcomes of immunotherapy. However, the "constantly active" mode of current STING agonist delivery strategies typically leads to off-target toxicity and hyperimmunity. To address this critical issue, herein a metal-organic frameworks-based nanoagonist (DZ@A7) featuring tumor-specific and near-infrared (NIR) light-enhanced decomposition is constructed for precisely localized STING activation and photodynamic-metalloimmunotherapy. The engineered nanoagonist enabled the generation of mitochondria-targeted reactive oxygen species under NIR irradiation to specifically release mitochondrial DNA (mtDNA) and inhibit the repair of nuclear DNA via hypoxia-responsive drugs. Oxidized tumor mtDNA serves as an endogenous danger-associated molecular pattern that activates the cGAS-STING pathway. Concurrently, NIR-accelerated zinc ions overloading in cancer cells further enhance the cGAS enzymatic activity through metalloimmune effects. By combining the synergistically enhanced activation of the cGAS-STING pathway triggered by NIR irradiation, the engineered nanoagonist facilitated the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes for primary tumor eradication, which also established a long-term anti-tumor immunity to suppress tumor metastasis. Therefore, the developed nanoagonist enabled NIR-triggered, agonist-free, and tandem-amplified activation of the cGAS-STING pathway, thereby offering a distinct paradigm for photodynamic-metalloimmunotherapy.

5.
Small ; 19(14): e2206174, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651135

RESUMO

Multidrug resistance (MDR) and metastasis in cancer have become increasingly serious problems since antitumor efficiency is greatly restricted by a single therapeutic modality and the insensitive tumor microenvironment (TME). Herein, metal-phenolic network-functionalized nanoparticles (t-P@TFP NPs) are designed to realize multiple therapeutic modalities and reshape the TME from insensitive to sensitive under multimodal imaging monitoring. After a single irradiation, a near-infrared laser-activated multistage reaction occurs. t-P@TFP NPs trigger the phase transition of perfluoropentane (PFP) to release tannic acid (TA)/ferric ion (Fe3+ )-coated paclitaxel (PTX) and cause hyperthermia in the tumor region to efficiently kill cancer cells. Additionally, PTX is released after the disassembly of the TA-Fe3+ film by the abundant adenosine triphosphate (ATP) in the malignant tumor, which concurrently inhibits ATP-dependent drug efflux to improve sensitivity to chemotherapeutic agents. Furthermore, hyperthermia-induced immunogenic cell death (ICD) transforms "cold" tumors into "hot" tumors with the assistance of PD-1/PD-L1 blockade to evoke antitumor immunogenicity. This work carefully reveals the mechanisms underlying the abilities of these multifunctional NPs, providing new insights into combating the proliferation and metastasis of multidrug-resistant tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Paclitaxel/farmacologia , Neoplasias/terapia , Sistemas de Liberação de Medicamentos/métodos , Resistência a Múltiplos Medicamentos , Metais , Linhagem Celular Tumoral , Microambiente Tumoral
6.
ACS Appl Mater Interfaces ; 15(1): 309-326, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576435

RESUMO

Cancer multidrug resistance (MDR) is an important reason that results in chemotherapy failure. As a main mechanism of MDR, overexpressed P-glycoprotein (P-gp) utilizes adenosine triphosphate (ATP) to actively pump chemotherapy drugs out of cells. In addition, metabolic reprogramming of drug-resistant tumor cells (DRTCs) exacerbates the specific hypoxic microenvironment and promotes tumor metastasis and recurrence. Therefore, we propose a novel sonodynamic therapy (SDT) paradigm to induce energy metabolism disorder and drug resistance change of DRTCs. A US-controlled "Nanoenabled Energy Metabolism Jammer" (TL@HPN) is designed using perfluoropentane (PFP) adsorbing oxygen in the core, and a targeting peptide (CGNKRTR) is attached to the liposome as the delivery carrier shell to incorporate hematoporphyrin monomethyl ether (HMME) and paclitaxel (PTX). The TL@HPN with ultrasonic/photoacoustic imaging (PAI/USI) precisely controlled the release of drugs and oxygen after being triggered by ultrasound (US), which attenuated the hypoxic microenvironment. SDT boosted the reactive oxygen species (ROS) content in tumor tissues, preferentially inducing mitochondrial apoptosis and maximizing immunogenic cell death (ICD). Persistently elevated oxidative stress levels inhibited ATP production and downregulated P-gp expression by disrupting the redox balance and electron transfer of the respiratory chain. We varied the effect of TL@HPN combined with PD-1/PD-L1 to activate autoimmunity and inhibit tumor metastasis, providing a practical strategy for expanding the use of SDT-mediated tumor energy metabolism.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Espécies Reativas de Oxigênio/metabolismo , Oxigênio , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA