Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
2.
RSC Adv ; 14(26): 18148-18160, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38854839

RESUMO

As an adsorbent, biochar has a highly porous structure and strong adsorption capacity, and can effectively purify the environment. In response to the increasingly serious problem of heavy metal pollution in water, this study used nano zero valent iron and rice husk biochar to prepare a new type of magnetic sheet-like biochar loaded nano zero valent iron (BC-nZVI) composite material through rheological phase reaction, showing remarkable advantages such as low cost, easy preparation, and superior environmental remediation effect. The physical and chemical properties and structure of the material were extensively characterized using various methods such as HRTEM, XPS, FESEM, EDS, XRD, FTIR, and RAMAN. Concurrently, batch experiments were undertaken to assess the removal efficiency of Pb(ii) by BC-nZVI, with investigations into the influence of pH value, temperature, soil water ratio, and initial concentration of heavy metal ion solution on its removal efficiency. The results indicate that the removal of Pb(ii) by BC-nZVI reaches an equilibrium state after around 120 minutes. Under the conditions of pH 6, temperature 20 °C, soil water ratio 1 : 5, and BC-nZVI dosage of 1 g L-1, BC-nZVI can reduce the Pb(ii) content in wastewater with an initial concentration of 30 mg L-1 to trace levels, and the treatment time is about 120 minutes. The analysis of adsorption kinetics and isotherms indicates that the adsorption process of Pb(ii) by BC-nZVI adheres to the quasi-second-order kinetic model and Langmuir model, suggesting a chemical adsorption process. Thermodynamic findings reveal that the adsorption of Pb(ii) by BC-nZVI is spontaneous. Furthermore, BC-nZVI primarily accumulates Pb(ii) through adsorption co-precipitation. BC-nZVI serves as an eco-friendly, cost-effective, and highly efficient adsorbent, showing promising capabilities in mitigating Pb(ii) heavy metal pollution. Its recoverability and reusability facilitated by an external magnetic field make it advantageous for remediating and treating lead-contaminated sites.

3.
Nature ; 630(8016): 437-446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599239

RESUMO

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Assuntos
Gasderminas , Lipoilação , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Microscopia Crioeletrônica , Cisteína/metabolismo , Gasderminas/química , Gasderminas/metabolismo , Inflamassomos/metabolismo , Lipossomos/metabolismo , Lipossomos/química , Mitocôndrias/metabolismo , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
4.
J Diabetes ; 16(4): e13538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599827

RESUMO

BACKGROUND: The association between obstructive sleep apnea syndrome (OSAS) and mortality has not been extensively researched among individuals with varying diabetic status. This study aimed to compare the relationship of OSAS with all-cause and cause-specific mortality in US individuals with or without diabetes based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS: The study included participants from the NHANES 2005-2008 and 2015-2018 cycles with follow-up information. OSAS data (OSAS.MAP10) was estimated from the questionnaire. Hazard ratios (HRs) and the 95% confidence interval (CI) of OSAS for mortality were calculated by Cox regression analysis in populations with different diabetes status. The relationships between OSAS and mortality risk were examined using survival curves and restricted cubic spline curves. RESULTS: A total of 13 761 participants with 7.68 ± 0.042 follow-up years were included. In the nondiabetic group, OSAS.MAP10 was positively associated with all-cause, cardiovascular, and cancer mortality. In individuals with prediabetes, OSAS.MAP10 was positively related to all-cause mortality (HR 1.11 [95% CI: 1.03-1.20]) and cardiovascular mortality (HR 1.17 [95% CI: 1.03-1.33]). The relationship between OSAS.MAP10 and the risk of all-cause mortality and cancer mortality exhibited L-shaped curves in diabetes patients (both with nonlinear p values <.01). Further threshold effect analysis revealed that OSAS was positively related to death risk when OSAS.MAP10 exceeded the threshold scores. CONCLUSION: The relationship between OSAS and mortality differed among participants with or without diabetes. Individualized clinical treatment plans should be developed in clinical practice to reduce the risk of death for patients with different metabolic conditions.


Assuntos
Diabetes Mellitus , Neoplasias , Apneia Obstrutiva do Sono , Adulto , Humanos , Estudos de Coortes , Inquéritos Nutricionais , Causas de Morte , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/diagnóstico
5.
J Cancer Res Clin Oncol ; 150(4): 203, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635069

RESUMO

BACKGROUND: Necroptosis-related long noncoding RNAs (lncRNAs) play crucial roles in cancer initiation and progression. Nevertheless, the role and mechanism of necroptosis-related lncRNAs in soft tissue sarcomas (STS) is so far unknown and needs to be explored further. METHODS: Clinical and genomic data were obtained from the UCSC Xena database. All STS patients' subclusters were performed by unsupervised consensus clustering method based on the prognosis-specific lncRNAs, and then assessed their survival advantage and immune infiltrates. In addition, we explored the pathways and biological processes in subclusters through gene set enrichment analysis. At last, we established the necroptosis-related lncRNA-based risk signature (NRLncSig) using the least absolute shrinkage and selection operator (LASSO) method, and explored the prediction performance and immune microenvironment of this signature in STS. RESULTS: A total of 911 normal soft tissue samples and 259 STS patients were included in current study. 39 prognosis-specific necroptosis-related lncRNAs were selected. Cluster 2 had a worse survival than the cluster 1 and characterized by different immune landscape in STS. A worse outcome in the high-risk group was observed by survival analysis and indicated an immunosuppressive microenvironment. The ROC curve analyses illustrated that the NRLncSig performing competitively in prediction of prognosis for STS patients. In addition, the nomogram presents excellent performance in predicting prognosis, which may be more beneficial towards STS patients' treatment. CONCLUSIONS: Our result indicated that the NRLncSig could be a good independent predictor of prognosis, and significantly connected with immune microenvironment, thereby providing new insights into the roles of necroptosis-related lncRNAs in STS.


Assuntos
RNA Longo não Codificante , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Necroptose , Prognóstico , Microambiente Tumoral
6.
Future Med Chem ; 16(9): 905-924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38624011

RESUMO

Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.


[Box: see text].


Assuntos
Antineoplásicos , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Estrutura Molecular , Animais
7.
Front Immunol ; 15: 1302903, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500886

RESUMO

Background: Immune checkpoint therapy, involving the programmed cell death 1 (PD-1) monoclonal antibody, has revolutionized the treatment of cancer. Tertiary lymphatic structure (TLS) serves as an immune indicator to predict the efficacy of PD-1 antibody therapy. However, there is no clear result whether the distribution, quantity, and maturity of TLS can be effective indicators for predicting the clinical efficacy of anti-PD1 immunotherapy in patients with colorectal cancer (CRC). Methods: Fifty-seven patients who underwent surgical resection and thirty-nine patients who received anti-PD-1 immunotherapy were enrolled in this retrospective study. Immunohistochemical staining and multiple fluorescence immunohistochemistry were used to evaluate the mismatch repair (MMR) subtypes and TLS distribution, quantity, and maturity, respectively. Results: A comprehensive patient score system was built based on TLS quantity and maturity. We found that the proportion of patients with score >1 was much higher in the deficient mismatch repair(dMMR) group than in the proficient mismatch repair(pMMR) group, and this difference was mainly due to intratumoral TLS. Patient score, based on the TLS evaluation of whole tumor, peritumor, or intratumor, was used to evaluate the efficacy of anti-PD1 immunotherapy. Based only on the intratumor TLS evaluation, the proportion of patients with a score >1 was higher in the response (PR + CR) group than in the non-response (PD) group. Multivariate analysis revealed that patient scores were positively correlated with the clinical efficacy of immunotherapy. Further analysis of immune-related progression-free survival was performed in patients with CRC who received anti-PD-1 immunotherapy. Patients with score >1 based on the intratumor TLS evaluation had significantly better survival. Conclusions: These results suggest that the patient score based on intratumor TLS evaluation may be a good immune predictive indicator for PD-1 antibody therapy in patients with CRC.


Assuntos
Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Humanos , Estudos Retrospectivos , Neoplasias Colorretais/patologia , Prognóstico , Imunoterapia/métodos
8.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38530158

RESUMO

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Assuntos
Piroptose , Animais , Humanos , Camundongos , Gasderminas , Lipoilação , Proteômica
10.
Antonie Van Leeuwenhoek ; 117(1): 13, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170218

RESUMO

A Gram-stain-negative, motile (by single polar flagellum) and rod-shaped bacterium, designated W1-6T, was isolated from a sediment of drainage ditch in winery in Guiyang, south-western China. Strain W1-6T showed the highest 16S rRNA gene sequence similarities with the type strain of Acidovorax wautersii (98.1%) and Simplicispira lacusdiani (97.9%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain W1-6T was placed adjacent to the members of the genus Simplicispira and formed a separat subclade. Cells showed oxidase and catalase negative reactions. The only respiratory quinone detected was ubiquinone-8 (Q-8). Summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) were predominant cellular fatty acids (> 10%) of strain W1-6T. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and five unidentified phospholipids were found in the polar lipid extraction. The genomic DNA G + C content was 65.6%. Strain W1-6T shared the highest digital DNA-DNA hybridization [dDDH, (27.6%)] and average nucleotide identity [ANI (84.3%)] values with the type strain of S. lacusdiani. The dDDH and ANI values were below the cutoff level (dDDH 70%; ANI 95-96%) for species delineation. The polyphasic characteristics indicated that the strain W1-6T represents a novel species of the genus Simplicispira, for which the name Simplicispira sedimenti sp. nov. is proposed. The type strain is W1-6T (= CGMCC 1.16274T = NBRC 115624T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , China , Ubiquinona , DNA , Drenagem , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética
12.
Cell Death Dis ; 14(11): 733, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37949877

RESUMO

Cuproptosis caused by copper overload is mediated by a novel regulatory mechanism that differs from previously documented mechanisms regulating cell death. Cells dependent on mitochondrial respiration showed increased sensitivity to a copper ionophore elesclomol that induced cuproptosis. Maternal embryonic leucine zipper kinase(MELK) promotes tumorigenesis and tumor progression through the PI3K/mTOR pathway, which exerts its effects partly by targeting the pyruvate dehydrogenase complex(PDHc) and reprogramming the morphology and function of mitochondria. However, the role of MELK in cuproptosis remains unclear. Here, we validated that elevated MELK expression enhanced the activity of PI3K/mTOR signaling and subsequently promoted Dihydrolipoamide S-Acetyltransferase (DLAT) expression and stabilized mitochondrial function. This regulatory effect helped to improve mitochondrial respiration, eliminate excessive intracellular reactive oxygen species (ROS), reduce intracellular oxidative stress/damage and the possibility of mitochondria-induced cell fate alternations, and ultimately promote the progression of HCC. Meanwhile, elesclomol reduced translocase of outer mitochondrial membrane 20(TOM 20) expression and increased DLAT oligomers. Moreover, the above changes of MELK to HCC were abolished by elesclomol. In conclusion, MELK enhanced the levels of the cuproptosis-related signature(CRS) gene DLAT (especially the proportion of DLAT monomer) by activating the PI3K/mTOR pathway, thereby promoting elesclomol drug resistance, altering mitochondrial function, and ultimately promoting HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose
13.
Arch Microbiol ; 205(9): 308, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594611

RESUMO

Gastrodia elata needs to establish a symbiotic relationship with Armillaria strains to obtain nutrients and energy. However, the signaling cross talk between G. elata and Armillaria strains is still unclear. During our experiment, we found that the vegetative mycelium of Armillaria gallica 012m grew significantly better in the media containing gibberellic acid (GA3) than the blank control group (BK). To explore the response mechanism, we performed an RNA-sequencing experiment to profile the transcriptome changes of A. gallica 012m cultured in the medium with exogenous GA3. The transcriptome-guided differential expression genes (DEGs) analysis of GA3 and BK showed that a total of 1309 genes were differentially expressed, including 361 upregulated genes and 948 downregulated genes. Some of those DEGs correlated with the biological process, including positive regulation of chromosome segregation, mitotic metaphase/anaphase transition, attachment of mitotic spindle microtubules to kinetochore, mitotic cytokinesis, and nuclear division. These analyses explained that GA3 actively promoted the growth of A. gallica to some extent. Further analysis of protein domain features showed that the deduced polypeptide contained 41 candidate genes of GA receptor, and 27 of them were expressed in our samples. We speculate that GA receptors exist in A. gallica 012m. Comparative studies of proteins showed that the postulated GA receptor domains of A. gallica 012m have a higher homologous correlation with fungi than others based on cluster analysis.


Assuntos
Armillaria , Armillaria/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Micélio
14.
Research (Wash D C) ; 6: 0184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398932

RESUMO

Mitochondrial dysfunction and glycolysis activation are improtant hallmarks of hepatocellular carcinoma (HCC). NOP2 is an S-adenosyl-L-methionine-dependent methyltransferase that regulates the cell cycle and proliferation activities. In this study, found that NOP2 contributes to HCC progression by promoting aerobic glycolysis. Our results revealed that NOP2 was highly expressed in HCC and that it was associated with unfavorable prognosis. NOP2 knockout in combination with sorafenib enhanced sorafenib sensitivity, which, in turn, led to marked tumor growth inhibition. Mechanistically, we identified that NOP2 regulates the c-Myc expression in an m5C-modification manner to promote glycolysis. Moreover, our results revealed that m5C methylation induced c-Myc mRNA degradation in an eukaryotic translation initiation factor 3 subunit A (EIF3A)-dependent manner. In addition, NOP2 was found to increase the expression of the glycolytic genes LDHA, TPI1, PKM2, and ENO1. Furthermore, MYC associated zinc finger protein (MAZ) was identified as the major transcription factor that directly controlled the expression of NOP2 in HCC. Notably, in a patient-derived tumor xenograft (PDX) model, adenovirus-mediated knockout of NOP2 maximized the antitumor effect and prolonged the survival of PDX-bearing mice. Our cumulative findings revealed the novel signaling pathway MAZ/NOP2/c-Myc in HCC and uncovered the important roles of NOP2 and m5C modifications in metabolic reprogramming. Therefore, targeting the MAZ/NOP2/c-Myc signaling pathway is suggested to be a potential therapeutic strategy for the treatment of HCC.

15.
Genes Dis ; 10(5): 2082-2096, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37492741

RESUMO

Accumulating evidence supports the association of somatic mutations with tumor occurrence and development. We aimed to identify somatic mutations with important implications in hepatocellular carcinoma (HCC) and explore their possible mechanisms. The gene mutation profiles of HCC patients were assessed, and the tumor mutation burden was calculated. Gene mutations closely associated with tumor mutation burden and patient overall survival were identified. In vivo and in vitro experiments were performed to verify the effects of putative genes on proliferation, invasion, drug resistance, and other malignant biological behaviors of tumor cells. Fourteen genes with a high mutation frequency were identified. The mutation status of 12 of these genes was closely related to the mutation burden. Among these 12 genes, LRP1B mutation was closely associated with patient prognosis. Nine genes were associated with immune cell infiltration. The results of in vivo and in vitro experiments showed that the knockdown of LRP1B promotes tumor cell proliferation and migration and enhances the resistance of tumor cells to liposomal doxorubicin. LRP1B could directly bind to NCSTN and affect its protein expression level, thereby regulating the PI3K/AKT pathway. Our mutational analysis revealed complex and orchestrated liposomal alterations linked to doxorubicin resistance that may also render cancers less susceptible to immunotherapy and also provides new treatment alternatives.

16.
Int J Gen Med ; 16: 2519-2530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346812

RESUMO

Background: Hepatocellular carcinoma (HCC) is a major cause of cancer death in the world. The aim of this study was to establish a new model to predict the prognosis of HCC. Materials and Methods: The mRNA, miRNA and lncRNA expression profiles of early (stage I-II) and late (stage III-IV) stage HCC patients were acquired from The Cancer Genome Atlas (TCGA) database. The differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) were identified between early and late stage HCC. Key molecules associated with the prognosis, and important immune cell types in HCC were identified. The nomogram based on incorporating age, gender, stage, and all important factors was constructed to predict the survival of HCC. Results: A total of 1516 DEmRNAs, 97 DEmiRNAs and 87 DElncRNAs were identified. A DElncRNA-DEmiRNA-DEmRNA regulatory network including 78 mRNAs, 50 miRNAs and 1 lncRNA was established. Among the regulatory network, 11 molecules were significantly correlated with the prognosis of HCC based on Lasso regression analysis. Then, Preadipocytes and 3 survival-associated DEmRNAs were identified as crucial biomarkers. Subsequently, a nomogram with a differentiation degree of 0.758, including 1 immune cell, 11 mRNAs and 3 miRNAs, was generated. Conclusion: Our study constructed a model by incorporating clinical information, significant biomarkers and immune cells to predict the survival of HCC, which achieved a good performance.

17.
Front Immunol ; 14: 1012999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180139

RESUMO

Background: The spindle and kinetochore associated (SKA) complex, which plays important roles in proper chromosome segregation during mitosis by maintaining the stabilization of kinetochore-spindle microtubule attachment during mitosis, has recently been reported to exert regulatory effects on the initiation and progression of various human cancer types. Nevertheless, the prognostic significance and immune infiltration of the SKA family across cancers have not been well elucidated. Methods: Using data from three large public datasets, including The Cancer Genome Atlas, Genotype-Tissue Expression, and Gene Expression Omnibus databases, a novel scoring system (termed the SKA score) was developed to quantify the SKA family level across cancers. We then evaluated the prognostic impact of the SKA score on survival and assessed the effect of the SKA score on immunotherapy at the pan-cancer level using multiomics bioinformatic analyses. The correlation of the SKA score and the tumor microenvironment (TME) was also explored in depth. Potential small molecular compounds and chemotherapeutic agents were assessed by CTRP and GDSC analyses. Immunohistochemistry was performed to verify the expression of the SKA family genes. Results: Our results demonstrated a close correlation between the SKA score and tumor development and prognosis in multiple cancers. The SKA score was positively related to cell cycle pathways and DNA replication across cancers, such as E2F targets, the G2M checkpoint, MYC targets V1/V2, mitotic spindles and DNA repair. Additionally, the SKA score was negatively related to the infiltration of various immune cells with antitumor effects in the TME. In addition, the potential value of the SKA score was identified to predict immunotherapy response for melanoma and bladder cancer. We also demonstrated a correlation between SKA1/2/3 and the response to drug treatment across cancers and the promising potential of the SKA complex and its genes as therapeutic targets in cancer. Immunohistochemistry demonstrated that the expression differences of SKA1/2/3 were significant between the breast cancer group and the paracancerous group. Conclusion: The SKA score plays a critical role in 33 cancer types and is highly related to tumor prognosis. Patients with elevated SKA scores have a clear immunosuppressive TME. The SKA score may serve as a predictor for patients receiving anti-PD-1/L1 therapy.


Assuntos
Cinetocoros , Neoplasias , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Prognóstico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
18.
Biomark Res ; 11(1): 33, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978140

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer that is challenging to diagnose at an early stage. Despite recent advances in combination chemotherapy, drug resistance limits the therapeutic value of this regimen. iCCA reportedly harbors high HMGA1 expression and pathway alterations, especially hyperactivation of the CCND1/CDK4/CDK6 and PI3K signaling pathway. In this study, we explored the potential of targeting CDK4/6 and PI3K inhibition to treat iCCA. METHODS: The significance of HMGA1 in iCCA was investigated with in vitro/vivo experiments. Western blot, qPCR, dual-luciferase reporter and immunofluorescence assays were performed to examine the mechanism of HMGA1 induced CCND1 expression. CCK-8, western blot, transwell, 3D sphere formation and colony formation assays were conducted to predict the potential role of CDK4/6 inhibitors PI3K/mTOR inhibitors in iCCA treatment. Xenograft mouse models were also used to determine the efficacy of combination treatment strategies related to HMGA1 in iCCA. RESULTS: HMGA1 promoted the proliferation, epithelial-mesenchymaltransition (EMT), metastasis and stemness of iCCA. In vitro studies showed that HMGA1 induced CCND1 expression via promoting CCND1 transcription and activating the PI3K signaling pathway. Palbociclib(CDK4/6 inhibitor) could suppress iCCA proliferation, migration and invasion, especially during the first 3 days. Although there was more stable attenuation of growth in the HIBEpic model, we observed substantial outgrowth in each hepatobiliary cancer cell model. PF-04691502(PI3K/mTOR inhibitor) exhibited similar effects to palbociclib. Compared with monotherapy, the combination retained effective inhibition for iCCA through the more potent and steady inhibition of CCND1, CDK4/6 and PI3K pathway. Furthermore, more significant inhibition of the common downstream signaling pathways is observed with the combination compared to monotherapy. CONCLUSIONS: Our study reveals the potential therapeutic role of dual inhibition of CDK4/6 and PI3K/mTOR pathways in iCCA, and proposes a new paradigm for the clinical treatment of iCCA.

19.
Cell Res ; 33(2): 131-146, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604598

RESUMO

Members of the tumor necrosis factor receptor superfamily (TNFRSF) are important therapeutic targets that can be activated to induce death of cancer cells or stimulate proliferation of immune cells. Although it has long been implicated that these receptors assemble preligand associated states that are required for dominant interference in human disease, such states have so far eluded structural characterization. Here, we find that the ectodomain of death receptor 5 (DR5-ECD), a representative member of TNFRSF, can specifically self-associate when anchored to lipid bilayer, and we report this self-association structure determined by nuclear magnetic resonance (NMR). Unexpectedly, two non-overlapping interaction interfaces are identified that could propagate to higher-order clusters. Structure-guided mutagenesis indicates that the observed preligand association structure is represented on DR5-expressing cells. The DR5 preligand association serves an autoinhibitory role as single-domain antibodies (sdAbs) that partially dissociate the preligand cluster can sensitize the receptor to its ligand TRAIL and even induce substantial receptor signaling in the absence of TRAIL. Unlike most agonistic antibodies that require multivalent binding to aggregate receptors for activation, these agonistic sdAbs are monovalent and act specifically on an oligomeric, autoinhibitory configuration of the receptor. Our data indicate that receptors such as DR5 can form structurally defined preclusters incompatible with signaling and that true agonists should disrupt the preligand cluster while converting it to signaling-productive cluster. This mechanism enhances our understanding of a long-standing question in TNFRSF signaling and suggests a new opportunity for developing agonistic molecules by targeting receptor preligand clustering.


Assuntos
Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA