Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Rheum Dis ; 27(2): e15036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333999

RESUMO

Myofibrillar myopathies (MFMs) are a group of genetically heterogeneous diseases affecting the skeletal and cardiac muscles. Myofibrillar myopathies are characterized by focal lysis of myogenic fibers and integration of degraded myogenic fiber products into inclusion bodies, which are typically rich in desmin and many other proteins. Herein, we report a case of a 54-year-old woman who experienced bilateral thigh weakness for over three years. She was diagnosed with MFMs based on muscle biopsy findings and the presence of a novel mutation in exon 8 of the LDB3 gene. Myofibrillar myopathies caused by a mutation in the LDB3 gene are extremely uncommon and often lack distinct clinical characteristics and typically exhibit a slow disease progression. When considering a diagnosis of MFMs, particularly in complex instances of autosomal dominant myopathies where muscle biopsies do not clearly indicate MFMs, it becomes crucial for clinicians to utilize genetic test as a diagnostic tool.


Assuntos
Miofibrilas , Miopatias Congênitas Estruturais , Feminino , Humanos , Pessoa de Meia-Idade , Miofibrilas/genética , Miofibrilas/metabolismo , Miofibrilas/patologia , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Mutação , Éxons , Miocárdio , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
3.
Biochem Biophys Res Commun ; 600: 130-135, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35219101

RESUMO

To explore the metabolic mechanism of differential plasma interleukin (IL)-6 expression in patients with rheumatoid arthritis (RA). A total of 240 RA patients were enrolled in the non-target metabolomics study cohort and 69 healthy volunteers were included as healthy controls (HCs). Plasma IL-6 levels were detected by electrochemiluminescence assay. Plasma metabolites were detected by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Patients with active RA (n = 20) and remissive RA (n = 20) and 20 HCs were enrolled in the targeted validation cohort. Metabolites identified by non-target metabolomics were quantitatively analyzed by ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry. Effects of 1-oleoyl-sn-glycero-3-phosphocholine (OGPC) associated with IL-6 on MH7A cells were assessed. After 24-h or 48-h induction by TNF-α, the supernatants were collected for IL-6 quantification by enzyme-linked immunosorbent assay. Furthermore, Western blot was performed to investigate the relative JAK2 and p-JAK2 expressions. With an increasing IL-6 level, OGPC shown to be related to the glycerophospholipid metabolism pathway by Kyoto Encyclopedia of Genes and Genomes analysis displayed a significant decrease. In the validating RA cohort, the OGPC concentrations in remissive RA group and active RA group decreased compared with HC group. OGPC down-regulated IL-6 secretion and p-JAK2 expression in TNF-α-induced MH7A cells in vitro. In conclusion, glycerophospholipid metabolism is the main metabolic pathway associated with the differential IL-6 expression in RA patients. The down-regulated OGPC is a promoting factor for the increased IL-6 plasma level in RA patients, which further affects the downstream JAK signaling pathway.


Assuntos
Artrite Reumatoide , Interleucina-6 , Artrite Reumatoide/patologia , Glicerofosfolipídeos , Humanos , Janus Quinases/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA