Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 1): 131141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537855

RESUMO

Wood fiber as a natural and renewable material has low cost and plenty of functional groups, which owns the ability to adsorb dyes. In order to improve the application performance of wood fiber in dye-pollution wastewater, Eucalyptus wood fiber loaded nanoscale zero-valent iron (EWF-nZVI) was developed to give EWF magnetism and the ability to degrade dyes. EWF-nZVI was characterized via FTIR, XRD, zeta potential, VSM, SEM-EDS and XPS. Results showed that EWF-nZVI owned a strong magnetism of 96.51 emu/g. The dye removal process of EWF-nZVI was more in line with the pseudo-second-order kinetics model. In addition, the Langmuir isotherm model fitting results showed that the maximum removal capacities of Congo red and Rhodamine B by EWF-nZVI were 714.29 mg/g and 68.49 mg/g at 328 K, respectively. After five adsorption-desorption cycles, the regeneration efficiencies of Congo red and Rhodamine B were 74 % and 42 % in turn. The dye removal mechanisms of EWF-nZVI included redox degradation (Congo red and Rhodamine B) and electrostatic adsorption (Congo red). In summary, EWF-nZVI is a promising biomass-based material with high dye removal capacities. This work is beneficial to promote the large-scale application of wood fiber in water treatment.


Assuntos
Corantes , Eucalyptus , Ferro , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Madeira , Eucalyptus/química , Águas Residuárias/química , Madeira/química , Corantes/química , Corantes/isolamento & purificação , Ferro/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Purificação da Água/métodos , Cinética , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Vermelho Congo/química , Vermelho Congo/isolamento & purificação , Rodaminas/química
2.
Polymers (Basel) ; 9(6)2017 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-30970909

RESUMO

Resorcinol-formaldehyde (RF) resin is a kind of excellent exterior-grade wood structural adhesive, which can be conveniently cold-set for various applications. In order to decrease the production cost, pyrolysis bio-oil from renewable bioresources was used to replace resorcinol to synthesize the bio-oil-resorcinol-aldehyde (BRF) resin. The effect of replacing resorcinol with bio-oil on the properties, bonding performance, and characterization of resorcinol-aldehyde resin was comparatively investigated. A higher solid content and viscosity, albeit a lower shear strength, was found when the replacement ratio of bio-oil increased. The bonding performance of BRF with 10 and 20 wt % bio-oil was close to that of the pure RF resin. However, the trends of being less cross-linked, more easily decomposed, but more porous were found when the substitution ratio of bio-oil was higher than 20 wt %. Interestingly, it was found that the wood failure values of the BRF resins with bio-oil of no more than 20 wt % were slightly higher than that of the pure RF resin. On the whole, BRF resins with 20 wt % bio-oil is recommended as a wood structural adhesive, comprehensively considering the bio-oil substitution ratio and resin properties. The results obtained here showed that pyrolysis bio-oil is a promising green raw material for the production of RF resin with lower cost.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(4): 944-8, 2012 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-22715758

RESUMO

The weight-loss character and gas evolution rule of larch wood at different heating rates were investigated by TG-FTIR (thermogravimetric analyzer coupled to a Fourier transform infrared spectrometer), and the results were compared with those of larch wood model-component mixture. The main weight-loss area of larch wood was wider than larch wood model-component mixture, and the residual char yield of larch wood (18.97%) was lower than larch wood model-component mixture (29.83%). During the pyrolysis process, the activation energy of larch wood model-component mixture was higher than the larch wood's in the low-temperature region, but there was little difference between the two segments in high temperature region. Larch wood came through several stages of water extraction, main component decomposition, charring during its pyrolysis process, and gas precipitation mainly happening at near 375 degrees C. The order of main gas products generated from the larch wood pyrolysis reaction was CO2 > H2O > CH4 > CO, and the gas product yield was significantly increased when the heating rate increased. The larch wood model-component mixture had the similar basic rules of producing gas to larch wood, but the former had relatively higher precipitation density than the latter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA