Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 3(10): e3348, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18833323

RESUMO

BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM) elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC)), which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid), but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid). Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl) azacyclotridecan-2-imine-hydrochloride) pretreatment reduced the naringenin-induced I(SC). In addition, significant inhibition of the naringenin-induced I(SC) by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator) was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation.


Assuntos
Constipação Intestinal/tratamento farmacológico , Modelos Animais de Doenças , Flavanonas/uso terapêutico , Laxantes/uso terapêutico , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Flavanonas/farmacologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Transporte de Íons , Laxantes/farmacologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
2.
J Physiol ; 586(20): 4843-57, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18755753

RESUMO

Recent studies suggest that the epithelium might modulate the contractility of smooth muscle. However, the mechanisms underlying this regulation are unknown. The present study investigated the regulation of smooth muscle contraction by the epithelium in rat vas deferens and the possible factor(s) involved. Exogenously applied ATP inhibited electrical field stimulation (EFS)-evoked smooth muscle contraction in an epithelium-dependent manner. As the effects of ATP on smooth muscle contractility were abrogated by inhibitors of prostaglandin synthesis, but not by those of nitric oxide synthesis, prostaglandins might mediate the effects of ATP. Consistent with this idea, PGE(2) inhibited EFS-evoked smooth muscle contraction independent of the epithelium, while ATP and UTP induced the release of PGE(2) from cultured rat vas deferens epithelial cells, but not smooth muscle cells. The ATP-induced PGE(2) release from vas deferens epithelial cells was abolished by U73122, an inhibitor of phospholipase C (PLC) and BAPTA AM, a Ca(2+) chelator. ATP also transiently increased [Ca(2+)](i) in vas deferens epithelial cells. This effect of ATP on [Ca(2+)](i) was independent of extracellular Ca(2+), but abolished by the P2 receptor antagonist RB2 and U73122. In membrane potential measurements using a voltage-sensitive dye, PGE(2), but not ATP, hyperpolarized vas deferens smooth muscle cells and this effect of PGE(2) was blocked by MDL12330A, an adenylate cyclase inhibitor, and the chromanol 293B, a blocker of cAMP-dependent K(+) channels. Taken together, our results suggest that ATP inhibition of vas deferens smooth muscle contraction is epithelium dependent. The data also suggest that ATP activates P2Y receptor-coupled Ca(2+) mobilization leading to the release of PGE(2) from epithelial cells, which in turn activates cAMP-dependent K(+) channels in smooth muscle cells leading to the hyperpolarization of membrane voltage and the inhibition of vas deferens contraction. Thus, the present findings suggest a novel regulatory mechanism by which the epithelium regulates the contractility of smooth muscle.


Assuntos
Trifosfato de Adenosina/administração & dosagem , Cálcio/metabolismo , Dinoprostona/metabolismo , Epitélio/metabolismo , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Ducto Deferente/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Epitélio/efeitos dos fármacos , Retroalimentação/efeitos dos fármacos , Retroalimentação/fisiologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley , Ducto Deferente/efeitos dos fármacos
3.
Sheng Li Xue Bao ; 59(4): 487-94, 2007 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-17700968

RESUMO

In addition to its well established role as a neurotransmitter, extracellular ATP has been considered as a paracrine/autocrine factor, either released from sperm or epithelial cells, in the male reproductive tract and shown to play a versatile role in modulating various reproductive functions. This review summarizes the signal pathways through which ATP induces anion secretion by the epithelia of the epididymis, as well as its epithelium-dependent modulation of smooth muscle contraction of the vas deferens. Finally, the overall role of ATP in coordinating various reproductive events in the male genital tract is discussed.


Assuntos
Trifosfato de Adenosina/fisiologia , Transdução de Sinais , Sistema Urogenital/fisiologia , Animais , Epididimo/fisiologia , Epitélio/fisiologia , Humanos , Masculino , Contração Muscular , Músculo Liso/fisiologia , Ducto Deferente/fisiologia
4.
Biol Reprod ; 75(3): 407-13, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16760378

RESUMO

Neurotransmitter-controlled Cl- secretions play an important role in maintenance of the epididymal microenvironment for sperm maturation. This study was carried out to investigate the effect of carbachol (CCH) on the cultured rat epididymal epithelium and the signal transduction mechanisms of this response. In normal K-H solution, CCH added basolaterally elicited a biphasic Isc response consisting of a transient spike followed by a second sustained response. Ca2+ activated Cl- channel blocker disulfonic acid stilbene (DIDS, 300 microM) only inhibited part of the CCH-induced Isc response, while nonselective Cl- channel blocker diphenylamine-dicarboxylic acid (DPC, 1 mM) reduced all, indicating the involvement of different conductance pathways. Both peaks of the CCH-induced Isc response could be significantly inhibited by pretreatment with an adenylate cyclase inhibitor, MDL12330A (50 microM). An increase in intracellular cAMP content upon stimulation of CCH was measured. All of the initial peak and part of the second peak could be inhibited by pretreatment with Ca2+-chelating agent BAPTA/AM (50 microM) and an endoplasmic reticulum Ca2+ pump inhibitor, Thapsigagin (Tg, 1 microM). In a whole-cell patch clamp experiment, CCH induced an inward current in the single cell. Two different profiles of currents were found; the first component current exhibited an outward rectifying I-V relationship in a time and voltage-dependent manner, and the current followed showed a linear I-V relationship. The carbachol-induced current was found to be partially blockable by DIDS and could be completely blocked by DPC. The above results indicate that the CCH-induced Cl- secretion could be mediated by Ca2+ and cAMP-dependent regulatory pathways.


Assuntos
Carbacol/farmacologia , Cloretos/metabolismo , Epididimo/metabolismo , Epitélio/metabolismo , Agonistas Muscarínicos/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Epididimo/citologia , Epididimo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Iminas/farmacologia , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA