Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(37): 56555-56561, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35347617

RESUMO

Few research have focused on the potential microorganism and gene resources for plant resistance to polybrominated diphenyl ether (PBDE) and heavy metal (HM) co-contamination. The purpose of this study was to investigate the impact of phyllospheric Wickerhamomyces anomalus bioremediation ability on PBDE and HM co-contamination. The results showed that the toleration capability of W. anomalus to cadmium (Cd2+) was higher than that to chromium (Cr) or 4-bromodiphenyl ether (BDE-3) contamination. The threshold levels of W. anomalus tolerance to BDE-3, Cd2+, and Cr were 30 mg/L, 500 mg/L, 30 mg/L, respectively. The use of the higher concentration of BDE-3 (30 mg/L) as a carbon source may improve tolerance to Cd2+ and Cr (10 mg/L Cd2+ and 10 mg/L Cr). Overexpression of Wapdr15 gene of ABCG subfamily from W. anomalus improved the tolerance to BDE-3 (10 mg/mL) and Cd2+ (0.5 mg/mL) significantly in transgenic tobacco lines. The synergism effect of BDE-3 and Cd2+ stress existed similarly in W. anomalus and transgenic lines. The findings suggest that W. anomalus should be taken into account for providing an efficient method in improving crops' tolerance during PBDE and HM co-contamination in soil.


Assuntos
Cádmio , Metais Pesados , Biodegradação Ambiental , Cromo , Éter , Metais Pesados/análise , Saccharomycetales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA