Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731467

RESUMO

Flavonoids are important secondary metabolites found in Juglans mandshurica Maxim., which is a precious reservoir of bioactive substances in China. To explore the antitumor actions of flavonoids (JMFs) from the waste branches of J. mandshurica, the following optimized purification parameters of JMFs by macroporous resins were first obtained. The loading concentration, flow rate, and loading volume of raw flavonoid extracts were 1.4 mg/mL, 2.4 BV/h, and 5 BV, respectively, and for desorption, 60% ethanol (4 BV) was selected to elute JMFs-loaded AB-8 resin at a flow rate of 2.4 BV/h. This adsorption behavior can be explained by the pseudo-second-order kinetic model and Langmuir isotherm model. Subsequently, JMFs were identified using Fourier transform infrared combined with high-performance liquid chromatography and tandem mass spectrometry, and a total of 156 flavonoids were identified. Furthermore, the inhibitory potential of JMFs on the proliferation, migration, and invasion of HepG2 cells was demonstrated. The results also show that exposure to JMFs induced apoptotic cell death, which might be associated with extrinsic and intrinsic pathways. Additionally, flow cytometry detection found that JMFs exposure triggered S phase arrest and the generation of reactive oxygen species in HepG2 cells. These findings suggest that the JMFs purified in this study represent great potential for the treatment of liver cancer.


Assuntos
Apoptose , Proliferação de Células , Flavonoides , Juglans , Juglans/química , Humanos , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Movimento Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569319

RESUMO

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Assuntos
Fabaceae , Gases de Efeito Estufa , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Solo , Metano/análise , Nitrogênio/metabolismo , Dióxido de Carbono/análise , Agricultura
4.
Bioorg Chem ; 142: 106970, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984101

RESUMO

Targeting the epidermal growth factor receptor (EGFR) has been recognized as an effective strategy for treating non-small-cell lung cancer (NSCLC). Although several representative EGFR inhibitors have been approved for clinical use, it is highly desirable to develop highly potent and selective EGFR inhibitors with novel scaffolds because of the occurrence of acquired resistance after treatment. Here we first demonstrate that the 4-indolyl quinazoline derivatives could potently inhibit EGFR in vitro and in vivo, of which YS-67 effectively and selectively inhibits EGFR[WT] (IC50 = 5.2 nM), EGFR[d746-750] (IC50 = 9.6 nM) and EGFR[L858R] (IC50 = 1.9 nM). The TREEspot™ kinase interaction map further reveals the binding selectivity toward 468 kinases. YS-67 not only potently suppresses p-EGFR and p-AKT, but also effectively inhibits proliferation of A549 (IC50 = 4.1 µM), PC-9 (IC50 = 0.5 µM) and A431 cells (IC50 = 2.1 µM). YS-67 treatment also causes colony formation inhibition, arrests cell cycle progression at G0/G1 phases and induces apoptosis. More importantly, YS-67 is well tolerated in A431 xenograft model after oral administration, showing effective tumor growth suppression and low toxicity. Collectively, YS-67 represents an underexplored scaffold for developing new EGFR inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Quinazolinas , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células , Inibidores de Proteínas Quinases , Linhagem Celular Tumoral , Receptores ErbB , Mutação
5.
Cell Death Dis ; 14(11): 716, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923740

RESUMO

Lysine-specific demethylase 1 (LSD1) has been identified as an important epigenetic target, and recent advances in lung cancer therapy have highlighted the importance of targeting ferroptosis. However, the precise mechanisms by which LSD1 regulates ferroptosis remain elusive. In this study, we report that the inhibition of LSD1 induces ferroptosis by enhancing lipid peroxidation and reactive oxygen species (ROS) accumulation. Mechanistically, LSD1 inhibition downregulates the expression of activating transcription factor 4 (ATF4) through epigenetic modification of histone H3 lysine 9 dimethyl (H3K9me2), which sequentially inhibits the expression of the cystine-glutamate antiporter (xCT) and decreases glutathione (GSH) production. Furthermore, LSD1 inhibition transcriptionally upregulates the expression of transferrin receptor (TFRC) and acyl-CoA synthetase long chain family member 4 (ACSL4) by enhancing the binding of histone H3 lysine 4 dimethyl (H3K4me2) to their promoter sequences. Importantly, the combination of an LSD1 inhibitor and a ferroptosis inducer demonstrates an enhanced anti-tumor effect in a xenograft model of non-small cell lung cancer (NSCLC), surpassing the efficacy of either agent alone. These findings reveal new insights into the mechanisms by which LSD1 inhibition induces ferroptosis, offering potential guidance for the development of new strategies in the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Histonas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Lisina , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Histona Desmetilases/metabolismo
6.
Biomed Pharmacother ; 167: 115491, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722187

RESUMO

The Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the standard first-line therapy for EGFR-mutated NSCLC. However, long-term clinical treatment often leads to acquired drug resistance, making NSCLC refractory. Therefore, it is essential to design new EGFR inhibitors as potential drugs against NSCLC. This study reports on a novel quinazoline-based compound called YS-363 that acts as a new EGFR inhibitor. YS-363 demonstrated potent inhibition against both wild-type and L858R mutant forms of EGFR with IC50 values of 0.96 nM and 0.67 nM, respectively. Additionally, YS-363 had a reversible inhibitory effect on cellular EGFR signaling, had excellent inhibitory activity on cell proliferation and migration, and induced G0/G1 cell cycle arrest and apoptosis. In xenograft models dependent on EGFR signaling, oral administration of YS-363 substantially suppressed tumor growth by inhibiting this pathway. In summary, YS-363 is a promising selective reversible inhibitor with a novel quinazoline scaffold that can potentially develop more effective anti-lung cancer agents targeting EGFR in patients who have developed resistance to current therapies such as TKIs like gefitinib or erlotinib.

9.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361940

RESUMO

In our previous study, human fibroblast growth factor 1 was successfully fused with oleosomes, energy-storing organelles of seeds, which are considered to be excellent "expression carriers" for substances with a convenient purification process. The present work aimed to explore the beneficial effects of oleosomes fused with human fibroblast growth factor 1 (OLAF) on wound healing. The data showed marked improvements in terms of the angiogenesis, vascular integrity, collagen and inflammation on the wound sites of rats with a full-thickness skin defect. Moreover, the positive role of OLAF in promoting angiogenesis and its possible pathways were clarified in vivo and in vitro. The results showed that the number, length and branches of the blood vessels of the chick embryo chorioallantoic membrane were markedly increased after OLAF treatment. Meanwhile, the in vitro results also revealed that 100 ng/mL OLAF exhibited a promoting effect on the proliferation, migration and tube formation of human umbilical vein endothelial cells. In addition, the potential of OLAF to improve wound angiogenesis was demonstrated to be associated with an up-regulated PI3K/Akt pathway by transcriptome sequencing analysis and the introduction of a PI3K/Akt pathway inhibitor (LY294002). These findings suggest that OLAF has many prospects in the development of drugs for wound healing.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Gotículas Lipídicas , Cicatrização , Animais , Embrião de Galinha , Humanos , Ratos , Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Gotículas Lipídicas/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
10.
Int J Biol Macromol ; 222(Pt A): 1376-1387, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126813

RESUMO

The oil body comprises lipid droplets surrounded by a surface embedded with oil body-related proteins. To form a drug delivery system, an oleosin can be fused with foreign proteins and bound to the oil body surface. Here, safflower oil bodies carrying oleosin-human epidermal growth factor (hEGF) were mixed with xanthan gum to form self-assembled polymers, referred as an oil body microgel emulsion (OBEME) without any chemical crosslinking agent. The physicochemical properties of OBEME were evaluated and compared with those of natural lipid droplets. The electrostatic interaction between xanthan gum and oil bodies prevents excessive cross-linking and forms a uniform network structure. The basic properties of OBEME were characterized by scanning electron microscopy, cryo-scanning electron microscopy, rheology, and thermogravimetric analysis. The OBEME is an interconnected network and presents a smooth surface without any pores; it remains stable at room temperature for 90 days, and is not affected by low-speed centrifugation and repeated freeze-thaw cycles as indicated by particle size, potential, and fluorescence microscopy analyses. The OBEME enlarges the skin tissue gap, enhances skin permeability, and shows a good slow-release effect in the transdermal absorption test in vivo. It demonstrates a wound healing effect; further, it regulates the inflammatory response of full-layer skin wounds in rats, as well as accelerate angiogenesis, and promote re-epithelialization and remodeling. The OBEME as a bioactive molecule-carbohydrate complex can effectively accelerate skin regeneration and has great translational potential to provide low-cost alternative wound care treatments.


Assuntos
Microgéis , Absorção Cutânea , Humanos , Ratos , Animais , Emulsões/química , Gotículas Lipídicas , Cicatrização
11.
Environ Res ; 213: 113706, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35714686

RESUMO

Soil microbial communities play a key role in the biochemical processes and nutrient cycles of the soil ecosystem and their byproducts, including greenhouse gases (GHGs). Organic fertilization influences bacterial soil biodiversity and is an essential emission source of GHGs in paddy soil ecosystems. However, the impact of organic fertilization on the functional microorganisms associated with the GHGs methane and nitrous oxide remains unknown. We conducted paddy soil field experiments under three different treatments (no fertilization, base fertilization, and organic fertilization) to investigate the contribution of organic fertilization to soil nutrients and the functional microorganisms associated with GHG emissions. We found that organic fertilization effectively increased the soil organic matter (P < 0.001), soil organic carbon (P < 0.001), and total nitrogen (P < 0.05) as well as the richness (operational taxonomic units and abundance-based coverage estimators) of the methanogenic communities. Correlation analyses showed that methanogenic communities that were present in abundance were more vulnerable to perturbations in soil properties compared to nitrifying bacterial communities. Partial least squares path model analyses elucidated that organic fertilization directly affected both methanogenic communities and nitrifying bacterial communities (P < 0.05), thereby accelerating methane emissions. Strong co-occurrence networks were observed within the soil-dominant phyla Acidobacteria, Bacteroidetes, and Proteobacteria. Our findings highlight the impact of organic fertilization on soil nutrients and functional microorganisms and guide mitigating GHG emissions from paddy soil agroecosystems.


Assuntos
Gases de Efeito Estufa , Microbiota , Oryza , Agricultura , Bactérias , Carbono/análise , Dióxido de Carbono/análise , Fertilizantes/análise , Metano/análise , Óxido Nitroso , Solo/química
12.
Sci Total Environ ; 832: 154975, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378178

RESUMO

Microplastics (MPs) are widespread anthropogenic pollutants that contaminate the terrestrial environment and serve as vectors of other contaminants. They trigger toxic effects during their migration and transmission, affecting the soil ecosystem and eventually presenting a serious threat to human health via the food chain. However, comprehensive studies on the distribution of MPs in soil and their correlation with human activities and terrestrial ecosystems are still lacking. In this study, we detected a significant difference in the MP size (both for the size <1 mm (P < 0.01) and the size 1-2 mm (P < 0.05)) in China and other countries based on bibliometric and meta-analysis. Principal component analysis revealed regional variations in MP distribution. The correlation analysis between MP characteristics and anthropogenic activities in China further revealed that industrial production was linked to polypropylene microplastics (PP-MPs) abundance (P < 0.01). We also discussed the interaction between soil MPs and ecosystems, such as soil microbial community, since the transportation of MPs was associated with its distribution and environmental factors in the soil. Linear regression analysis further showed that environmental variables, such as culture temperature, were negatively related to MPs' degradation efficiency by the fungi (P < 0.05). This study aims to evaluate the distribution, transfer, and impact of MPs, and their interaction with the soil ecosystem and provides information on the prevention and management of MP pollution in the terrestrial environment.


Assuntos
Microbiota , Microplásticos , Efeitos Antropogênicos , Ecossistema , Humanos , Plásticos , Solo
13.
Environ Pollut ; 306: 119363, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489535

RESUMO

Sulfidized nanoscale zero-valent iron (S-nZVI) is a promising material for in situ soil remediation. However, its transformation (i.e., aging) and effects on the microbial community in soil ecosystems are largely unknown. In this study, S-nZVI having low (S-nZVI (L)) and high sulfur-doping (S-nZVI (H)) were incubated in soil microcosms and bare nZVI was used as a control. Their aged products were characterized using microspectroscopic analyses and the changes in the corresponding soil microbial community were determined using high-throughput sequencing analyses. The results indicate that severe corrosion of both bare and S-nZVI occurred over 56 days of aging with significant morphological and mineral changes. Magnetite, lepidocrocite, and goethite were detected as the main aged products. In addition, sulfate ions, pyrite, and iron polysulfide were formed in the aged products of S-nZVI. Cr(VI) removal test results indicated that S-nZVI(L) achieved the best results after aging, likely because of the optimal FeS arrangement on its nanoparticle surfaces. The presence of nZVI and S-nZVI increased the abundance of some magnetotactic microorganisms and altered bacterial and fungal community structures and compositions. Moreover, the addition of S-nZVI enriched some bacterial and fungal genera related to sulfur cycling because of the presence of sulfide-bearing material. The findings reveal the transformation of S-nZVI during aging and its effects on microbial communities in soil ecosystems, thereby helping to the evaluation of S-nZVI application in soil remediation.


Assuntos
Recuperação e Remediação Ambiental , Microbiota , Ferro/química , Solo/química , Enxofre
14.
Eur J Pharmacol ; 920: 174822, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151642

RESUMO

The vitamin A metabolite all-trans retinoic acid (ATRA) plays a key role in immune response, but effects of ATRA on cancer-associated immunity remains unclear. Previously, we have shown that ATRA regulates the expression of PD-L1 in gastric cancer (GC) cells. We herein reported the mechanism underlying ATRA-induced PD-L1 expression in GC cells and the effects of ATRA on cancer-associated immunosuppression in vitro and in vivo. ATRA enhanced PD-L1 expression through increasing its protein stability and protein synthesis, which was suppressed by JAK pan-inhibitor ruxolitinib (RUX) but enhanced in the combination with IFN-γ. In T-cell-mediated killing assay, the upregulation of PD-L1-induced by ATRA rendered GC cells strongly resistant to activated T-cell killing, which was reversed by RUX. In vivo, PD-L1 antibody restricted tumor growth, but ATRA antagonized PD-L1 antibody efficacy. Importantly, RUX not only inhibited the expression of PD-L1 induced by ATRA, but also resensitized GC cells to PD-L1 antibody. In conclusion, our study illustrated that ATRA attenuated the effect of PD-L1 blockade through upregulating PD-L1 and blocking PD-L1 expression is an important role for the generation of effective anti-tumor immune response in the combination of immunotherapy and chemotherapy or targeted therapy.


Assuntos
Antígeno B7-H1 , Neoplasias Gástricas , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias Gástricas/metabolismo , Linfócitos T , Tretinoína/farmacologia , Tretinoína/uso terapêutico
15.
Environ Res ; 204(Pt C): 112287, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743805

RESUMO

Microplastics (MPs) and nonylphenol (NP) are typical pollutants that are frequently detected in aquatic environments and can pose a risk to aquatic organisms. However, the responses of algae, the producers in aquatic ecosystems, to MP and NP co-exposure have not been extensively investigated. In this study, polystyrene (PS, 50 mg/L) was selected as a representative MP to evaluate its short-term effects on algae treated with NP (4 mg/L). The results showed that PS mitigated the toxicity of NP to algae after 96 h of exposure, as illustrated by the higher cell densities and pigment concentrations, as well as lower extracellular protein contents and better integrity of intracellular structures, in algae subjected to PS + NP treatment compared with those subjected to NP treatment. Moreover, the upregulated expression of genes involved in photosynthesis and downregulated expression of ribosomal genes as well as genes encoding ATPase and antioxidase, analyzed through RNA-sequencing analysis, further indicated the potential repair and defense mechanisms of PS in NP-treated algae.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Microplásticos/toxicidade , Fenóis , Plásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Sci Pollut Res Int ; 29(14): 20711-20720, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741738

RESUMO

Nanoparticles and organic pollutants are two major contaminants found in aquatic environments. Algae are regarded as the model organism for the risk assessment of pollutants in water. In our previous study, we investigated the toxic effects of nonylphenol (NP), a typical organic water pollutant, on algae; however, it remains unclear how algae respond to the coexistence of NP and nanoparticles. In this study, a concentration gradient of nanoscale zero-valent iron (nZVI; 10, 50, 100, and 200 mg/L) was added to NP-exposed Dictyosphaerium sp. to investigate both the toxic effects of this combination and the potential for NP removal. nZVI had a dose-dependent effect on NP-exposed algae, with high nZVI concentrations significantly decreasing algal biomass and pigment content, as well as severely damaging algal cellular ultrastructure. In addition, genes involved in antioxidant response, photosynthesis, and ribosome synthesis were significantly altered when NP-exposed algae were incubated with nZVI. In contrast to high nZVI concentrations, adding a small concentration of nZVI led to reduced toxicity in NP-exposed algae, while significantly enhancing the NP removal rate. This study improves our understanding of algal responses to various pollutants and suggests that nZVI may assist in the remediation of NP in aquatic ecosystems.


Assuntos
Ferro , Poluentes Químicos da Água , Ecossistema , Ferro/química , Fenóis , Transcriptoma , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Cutan Ocul Toxicol ; 40(3): 221-231, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34003048

RESUMO

INTRODUCTION: Oil body (OB), a subcellular organelle that stores oil in plant seeds, is considered a new transdermal drug delivery system. With the increasing understanding of the OB and its main protein (oleosin), numerous studies have been conducted on OB as "carrier" for the expression of exogenous proteins. In our previous study, oil body fused with aFGF (OLAF) was obtained using a plant oil body expression system that had been preliminarily proven to be effective in accelerating the healing of skin wounds. However, no dermal toxicological information on OLAF is available. OBJECTIVE: To ensure the dermal safety of OLAF, a series of tests (the acute dermal toxicity test, 21-day repeat dermal toxicity test, dermal irritation test and skin sensitisation test) were conducted after optimising the extraction protocol of OLAF. MATERIALS AND METHODS: To improve the extraction rate of OLAF, response surface methodology (RSM) was first employed to optimise the extraction conditions. Then, Wistar rats were exposed to OLAF (400 mg·kg-1 body weight) in two different ways (6 hours/time for 24 hours and 1 time/day for 21 days) to evaluate the acute dermal toxicity and 21-day repeated dermal toxicity of OLAF. In the acute dermal toxicity test, clinical observations were conducted to evaluate the toxicity, behaviour, and health of the animals for 14 consecutive days. Similarly, the clinical signs, body weight, haematological and biochemical parameters, histopathological changes and other indicators were also detected during the 21 days administration. For the dermal irritation test, single and multiple doses of OLAF (125 mg·kg-1 body weight) were administered to albino rabbits for 14 days (1 time/day). The irritation reaction on the skin of each albino rabbit was recorded and scored. Meanwhile, skin sensitisation to OLAF was conducted using guinea pigs for a period of 28 days. RESULTS: Suitable extraction conditions for OLAF (PBS concentration 0.01, pH of PBS 8.6, solid-liquid ratio 1:385 g·mL-1) were obtained using RSM. Under these conditions, the extraction rate and particle size of OLAF were 7.29% and 1290 nm, respectively. In the tests of acute dermal toxicity and 21-day repeated dermal toxicity, no mortality or significant differences were observed in terms of clinical signs, body weight, haematological parameters, biochemical parameters and anatomopathological analysis. With respect to the dermal irritation test and skin sensitisation test, no differences in erythema, oedema or other abnormalities were observed between treatment and control groups on gross and histopathological examinations. CONCLUSIONS: The results of this study suggest that OLAF does not cause obvious toxicity, skin sensitisation or irritation in animals.


Assuntos
Portadores de Fármacos/toxicidade , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Gotículas Lipídicas , Óleos de Plantas/isolamento & purificação , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Feminino , Fator 1 de Crescimento de Fibroblastos/toxicidade , Cobaias , Masculino , Óleos de Plantas/toxicidade , Coelhos , Ratos , Testes Cutâneos , Testes de Toxicidade Aguda , Cicatrização/efeitos dos fármacos
18.
Cutan Ocul Toxicol ; 40(1): 45-53, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33438439

RESUMO

Objective: The expression of therapeutic proteins in plant oil body bioreactors has attracted much attention. But its safety is not yet clear. This article determines the risk of safety after using the drug. Methods: The oil body-linked oleosin-hEGF microgel emulsion (OBEME) was prepared by mixing the xanthan gum with suitable concentrations in an appropriate proportion. Skin irritation and sensitization reaction were investigated in rats and guinea pigs using OBEME as test article.Results: The OBEME did not produce dermal erythema/eschar or oedema responses. The dermal subacute and subchronic toxicity of OBEME were evaluated in accordance with OECD guidelines. Compared with the control group, the basic physical signs, such as weight, feed, drinking, excretion, and behaviour of experimental animals, were not abnormal. In addition, no abnormality was found in haematological parameters, biochemical indexes, relative organ weight, and histopathological observation of organs, and there was no significant difference compared with normal saline treatment group. Therefore, we conclude that OBEME has no toxic effects and is safe and reliable to be used for topical application.


Assuntos
Portadores de Fármacos/toxicidade , Fator de Crescimento Epidérmico/toxicidade , Proteínas de Plantas/toxicidade , Proteínas Recombinantes de Fusão/toxicidade , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Reatores Biológicos/efeitos adversos , Carthamus tinctorius/genética , Dermatite de Contato/diagnóstico , Dermatite de Contato/etiologia , Dermatite de Contato/patologia , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Emulsões , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/genética , Eritema/induzido quimicamente , Eritema/diagnóstico , Cobaias , Humanos , Gotículas Lipídicas/química , Masculino , Microgéis , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Pele/imunologia , Pele/lesões , Pele/patologia , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Subaguda/métodos , Testes de Toxicidade Subcrônica/métodos , Cicatrização/efeitos dos fármacos
19.
J Hazard Mater ; 406: 124650, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33307452

RESUMO

The interactions and mechanisms between soil dissolved organic matter (DOM) and three types of iron-based nanoparticles (NPs), i.e., nanoscale zero-valent iron (nZVI) particles, Fe2O3 NPs, and Fe3O4 NPs, were investigated in short-term exposure experiments. The adsorption results showed that soil DOM was rapidly adsorbed on the surface of the iron-based NPs with the adsorption rate varying according to Fe3O4 > Fe2O3 > nZVI. Spectral analysis results revealed that aromatic DOM fractions with high-molecular-weights were preferentially adsorbed. The binding mechanism was determined as hydrogen bonding and ligand exchange via Fourier transform infrared spectroscopy (FT-IR) analysis. Scanning electron microscopy, FT-IR, X-ray photoelectron spectroscopy, and X-ray diffraction were used to identify the corrosion products of the three iron-based NPs at the adsorption equilibrium. The results suggest that Fe3O4 and/or γ-Fe2O3 and α-FeOOH were the main corrosion products of nZVIs and α-FeOOH was obtained as an aged product of Fe3O4 NPs. Results of Cr(VI) removal tests suggest that the aged nZVI achieved 79.87% of Cr(VI) removal and the Cr(VI) removal efficiency was significantly improved by coating DOM onto Fe2O3 NPs. The overall data indicate the fate and transformation of iron-based NPs and the enhancement for Cr(VI) removal after interactions between DOM and NPs.

20.
Mol Med Rep ; 22(5): 3976-3984, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901833

RESUMO

The use of Paecilomyces tenuipes (P. tenuipes), a Chinese medicinal fungus in scientific research, is limited due to its low adenosine content. To improve adenosine production, the present study investigated the gene network of adenosine biosynthesis in P. tenuipes via transcriptome analysis. Mycelia of P. tenuipes cultured for 24 h (PT24), 102 h (PT102) and 196 h (PT192) were subjected to RNA sequencing. In total, 13,353 unigenes were obtained. Based on sequence similarity, 8,099 unigenes were annotated with known proteins. Of these 8,099 unigenes, 5,123 had functions assigned based on Gene Ontology terms while 4,158 were annotated based on the Eukaryotic Orthologous Groups database. Moreover, 1,272 unigenes were mapped to 281 Kyoto Encyclopedia of Genes and Genomes pathways. In addition, the differential gene expression of the three libraries was also performed. A total of 601, 1,658 and 628 differentially expressed genes (DEGs) were detected in PT24 vs. PT102, PT24 vs. PT192 and PT102 vs. PT192 groups, respectively. Reverse transcription­quantitative PCR was performed to analyze the expression levels of 14 DEGs putatively associated with adenosine biosynthesis in P. tenuipes. The results showed that two DEGs were closely associated with adenosine accumulation of P. tenuipes. The present study not only provides an improved understanding of the genetic information of P. tenuipes but also the findings can be used to aid research into P. tenuipes.


Assuntos
Adenina/biossíntese , Vias Biossintéticas , Cordyceps/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Cordyceps/genética , Cordyceps/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA