Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 44: 101953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593585

RESUMO

BACKGROUND: Fibronectin type III domain containing 1 (FNDC1) has been associated with the metastasis of many tumors, but its function in lung cancer remains uncertain. METHODS: FNDC1 expression was analyzed in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), evaluate its prognostic value. Gene Set Enrichment Analysis (GSEA) enrichment analysis of differential expression of FNDC1 in lung cancer. The expression of FNDC1 was detected in five types of lung cancer cells, and screened to establish FNDC1 stable knockdown cell strains. To observe the migration and invasion ability of lung cancer cells after FNDC1 knockdown. Finally, we used rhIL-6 to interfere with the stable knockdown of FNDC1 in A549 cells and observed the recovery of migration and invasion. RESULT: Our results showed that FNDC1 expression was increased in 21 tumor tissues, including lung cancer, and was associated with poor prognosis in five cancers, including lung adenocarcinoma (LUAD) (P < 0.05). GSEA enrichment analysis showed that FNDC1 was related to the pathways involved the JAK-STAT signaling pathway. Stable knockdown of FNDC1 in A549 and H292 cells resulted in decreased migration and invasion ability of both cells, accompanied by decreased expression of MMP-2 and Snail, and a significant decline in the expression of p-JAK2 and p-STAT3. The suppressive effect of FNDC1 knockdown on lung cancer cell metastasis counteracted by the JAK-STAT agonist rhIL-6 were presented in the nude mouse metastatic tumor model. CONCLUSION: FNDC1 is implicated in poor prognosis of a diverse range of malignant tumors, which can promote metastasis and invasion of lung cancer through the JAK2-STAT3 signaling pathway.

2.
J Pharm Biomed Anal ; 243: 116061, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430615

RESUMO

BACKGROUND: Diabetes mellitus type 2 and pulmonary fibrosis have been found to be closely related in clinical practice. Diabetic pulmonary fibrosis (DPF) is a complication of diabetes mellitus, but its treatment has yet to be thoroughly investigated. Bu Yang Huan Wu Decoction (BYHWD) is a well-known traditional Chinese prescription that has shown great efficacy in treating pulmonary fibrosis with hypoglycemic and hypolipidemic effects. METHODS: The active ingredients of BYHWD and the corresponding targets were retrieved from the Traditional Chinese Medicine Systematic Pharmacology Database (TCMSP) and SymMap2. Disease-related targets were obtained from the GeneCard, OMIM and CTD databases. GO enrichment and KEGG pathway enrichment were carried out using the DAVID database. AutoDock Vina software was employed to perform molecular docking. Molecular dynamics simulations of proteinligand complexes were conducted by Gromacs. Animal experiments were further performed to validate the effects of BYHWD on the selected core targets, markers of oxidative stress, serum lipids, blood glucose and pulmonary fibrosis. RESULTS: A total of 84 active ingredients and 830 target genes were screened in BYHWD, among which 56 target genes intersected with DPF-related targets. Network pharmacological analysis revealed that the active ingredients can regulate target genes such as IL-6, TNF-α, VEGFA and CASP3, mainly through AGE-RAGE signaling pathway, HIF-1 signaling pathway and TNF signaling pathway. Molecular docking and molecular dynamics simulations suggested that IL6-astragaloside IV, IL6-baicalein, TNFα-astragaloside IV, and TNFα-baicalein docking complexes could bind stably. Animal experiments showed that BYHWD could reduce the expression of core targets such as VEGFA, CASP3, IL-6 and TNF-α. In addition, BYHWD could reduce blood glucose, lipid, and MDA levels in DPF while increasing the activities of SOD, CAT and GSH-Px. BYHWD attenuated the expression of HYP and collagen I, mitigating pathological damage and collagen deposition within lung tissue. CONCLUSIONS: BYHWD modulates lipid metabolism disorders and oxidative stress by targeting the core targets of IL6, TNF-α, VEGFA and CASP3 through the AGE-RAGE signaling pathway, making it a potential therapy for DPF.


Assuntos
Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Transtornos do Metabolismo dos Lipídeos , Fibrose Pulmonar , Saponinas , Triterpenos , Animais , Fator de Necrose Tumoral alfa , Fibrose Pulmonar/tratamento farmacológico , Caspase 3 , Interleucina-6 , Glicemia , Metabolismo dos Lipídeos , Simulação de Acoplamento Molecular , Estresse Oxidativo , Colágeno , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Front Pharmacol ; 15: 1348708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414734

RESUMO

Background: The etiological underpinnings of gastroesophageal reflux disease (GERD) and idiopathic pulmonary fibrosis (IPF) remain elusive, coupled with a scarcity of effective therapeutic interventions for IPF. Angelicae sinensis radix (ASR, also named Danggui) is a Chinese herb with potential anti-fibrotic properties, that holds promise as a therapeutic agent for IPF. Objective: This study seeks to elucidate the causal interplay and potential mechanisms underlying the coexistence of GERD and IPF. Furthermore, it aims to investigate the regulatory effect of ASR on this complex relationship. Methods: A two-sample Mendelian randomization (TSMR) approach was employed to delineate the causal connection between gastroesophageal reflux disease and IPF, with Phennoscanner V2 employed to mitigate confounding factors. Utilizing single nucleotide polymorphism (SNPs) and publicly available microarray data, we analyzed potential targets and mechanisms related to IPF in GERD. Network pharmacology and molecular docking were employed to explore the targets and efficacy of ASR in treating GERD-related IPF. External datasets were subsequently utilized to identify potential diagnostic biomarkers for GERD-related IPF. Results: The IVW analysis demonstrated a positive causal relationship between GERD and IPF (IVW: OR = 1.002, 95%CI: 1.001, 1.003; p < 0.001). Twenty-five shared differentially expressed genes (DEGs) were identified. GO functional analysis revealed enrichment in neural, cellular, and brain development processes, concentrated in chromosomes and plasma membranes, with protein binding and activation involvement. KEGG analysis unveiled enrichment in proteoglycan, ERBB, and neuroactive ligand-receptor interaction pathways in cancer. Protein-protein interaction (PPI) analysis identified seven hub genes. Network pharmacology analysis demonstrated that 104 components of ASR targeted five hub genes (PDE4B, DRD2, ERBB4, ESR1, GRM8), with molecular docking confirming their excellent binding efficiency. GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF (ESR1: AUCGERD = 0.762, AUCIPF = 0.725; GRM8: AUCGERD = 0.717, AUCIPF = 0.908). GRM8 and ESR1 emerged as potential diagnostic biomarkers for GERD-related IPF, validated in external datasets. Conclusion: This study establishes a causal link between GERD and IPF, identifying five key targets and two potential diagnostic biomarkers for GERD-related IPF. ASR exhibits intervention efficacy and favorable binding characteristics, positioning it as a promising candidate for treating GERD-related IPF. The potential regulatory mechanisms may involve cell responses to fibroblast growth factor stimulation and steroidal hormone-mediated signaling pathways.

4.
Sci Rep ; 13(1): 10110, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666859

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic disease with an unclear etiology and no effective treatment. This study aims to elucidate the pathogenic mechanism networks involving multiple targets and pathways in IPF. Extracts and metabolites of Astragalus membranaceus (AM) and Radix paeoniae rubra (RPR), two well-known traditional Chinese medicines, have demonstrated therapeutic effects on IPF. However, the underlying mechanisms of AM and RPR remain unclear. Utilizing network pharmacology analysis, differentially expressed genes (DEGs) associated with IPF were obtained from the GEO database. Targets of AM and RPR were identified using the TCM Systems Pharmacology Database and Analysis Platform and SwissTargetPrediction. A protein-protein interaction (PPI) network was subsequently constructed and analyzed using the STRING database and Cytoscape software. Gene ontology enrichment analysis and kyoto encyclopedia of genes and genomes analysis were conducted using Metascape. Additionally, a component-target-pathway network and a Sankey diagram were employed to identify the main active components, and molecular docking was performed between these components and proteins encoded by key targets. Finally, in vivo studies were conducted based on network pharmacology. A total of 117 common targets between DEGs of IPF and drug targets were identified and included in the PPI network, in which AKT1, MAPK3, HSP90AA1, VEGFA, CASP3, JUN, HIF1A, CCND1, PTGS2, and MDM2 were predicted as key targets. These 117 targets were enriched in the PI3K-AKT pathway, HIF-1 signaling pathway, apoptosis, and microRNAs in cancer. Astragaloside III, (R)-Isomucronulatol, Astragaloside I, Paeoniflorin, and ß-sitosterol were selected as the main active components. Docking scores ranged from - 4.7 to - 10.7 kcal/mol, indicating a strong binding affinity between the main active compounds and key targets. In vivo studies have indeed shown that AM and RPR can alleviate the pathological lung fibrotic damage caused by bleomycin treatment. The treatment with AM and RPR resulted in a reduction of mRNA levels for key targets AKT1, HSP90AA1, CASP3, MAPK3, and VEGFA. Additionally, the protein expression levels of AKT1, HSP90AA1, and VEGFA were also reduced. These results support the therapeutic potential of AM and RPR in ameliorating pulmonary fibrosis and provide insight into the molecular mechanisms involved in their therapeutic effects.


Assuntos
Astragalus propinquus , Fibrose Pulmonar Idiopática , Caspase 3 , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases
5.
Front Chem ; 11: 1128671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065830

RESUMO

Background: Herb pair of Astragali Radix (AR) and Spreading Hedyotis Herb (SH) has been frequently prescribed in clinical for the treatment of lung cancer owing to its favorable efficacy. Yet, the mechanism under the therapeutic effects remained unveiled, which has limited its clinical applications, and new drug development for lung cancer. Methods: The bioactive ingredients of AR and SH were retrieved from the Traditional Chinese Medicine System Pharmacology Database, with the targets of obtained components predicted by Swiss Target Prediction. Genes related to lung adenocarcinoma (LUAD) were acquired from GeneCards, OMIM and CTD databases, with the hub genes of LUAD screened by CTD database. The intersected targets of LUAD and AR-SH were obtained by Venn, with David Database employed to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Survival analysis of the hub genes of LUAD was carried out using TCGA-LUAD dataset. Molecular docking of core proteins and active ingredients was performed by Auto-Dock Vina software, followed by molecular dynamics simulations of protein-ligand complexes with well-docked conformations. Results: 29 active ingredients were screened out with 422 corresponding targets predicted. It is revealed that AR-SH can act on various targets such as EGFR, MAPK1, and KARS by ursolic acid (UA), Astragaloside IV(ASIV), and Isomucronulatol 7,2'-di-O-glucoside (IDOG) to alleviate the symptoms of LUAD. Biological processes involved are protein phosphorylation, negative regulation of apoptotic process, and pathways involved are endocrine resistance, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt, and HIF-1 pathway. Molecular docking analysis indicated that the binding energy of most of the screened active ingredients to proteins encoded by core genes was less than -5.6 kcal/mol, with some active ingredients showing even lower binding energy to EGFR than Gefitinib. Three ligand-receptor complexes including EGFR-UA, MAPK1-ASIV, and KRAS-IDOG were found to bind relatively stable by molecular dynamics simulation, which was consistent with the results of molecule docking. Conclusion: We suggested that the herb pair of AR-SH can act on targets like EGFR, MAPK1 and KRAS by UA, ASIV and IDOG, to play a vital role in the treatment and the enhancement of prognosis of LUAD.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35733628

RESUMO

Pulmonary fibrosis is a serious disease for which effective drugs are unavailable. Here, we treated rat models of bleomycin (BLM)-induced pulmonary fibrosis with Astragali Radix extract injection (AI) combined with or without bone marrow mesenchymal stem cells (BMSCs). We injected rats intratracheally with BLM and transplanted BMSCs via tail vein injection 15 days later. We also intraperitoneally injected AI daily from days 15 to 28. Changes in lung pathology and function, as well as the levels of matrix metalloproteinases, collagen, C-X-C motif chemokine ligand 12 (CXCL12), and cluster of differentiation 90 (CD90) were assessed. The results revealed that compared with the BLM group, groups treated with ARE and BMSCs (alone or combined) reduced the expression levels of TGF-ß1 and collagens I and III, ameliorated pathological lung fibrotic damage, and improved lung function. The expression levels of MMP-1, MMP-3, and MMP-9 were reduced by either AI or BMSCs alone, whereas those of MMP-3, MMP-9, TIMP-1, CXCL12, and CD90 were elevated by combined AI and BMSCs compared with the BLM group. Overall, these findings demonstrated that AI and BMSCs both can reduce damage caused by PF in rats and that AI altered the expression of chemokines and surface markers in BMSCs.

7.
Biomed Res Int ; 2022: 2775434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528155

RESUMO

Objective: To explore the mechanism of Dahuang Fuzi decoction in the treatment of incomplete intestinal obstruction (IIO) based on network pharmacology and molecular docking. Methods: The chemical components of Rhubarb, Aconite, and Asarum were searched by the Traditional Chinese Medicine Systems Pharmacology database, where the possible active components were screened by oral bioavailability and drug likeness as filtering indicators. The relevant targets in the Swiss Target Prediction database were obtained according to the structure of the chemical components confirmed by the PubChem database. Disease targets of IIO were collected using GeneCards and OMIM databases. We obtained the cross-target using VENNY to capture the common targets. PPI analysis was performed on the intersection genes combined with Cytoscape 3.7.2. Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out by David database. The core targets and active ingredients were molecularly docked through AutoDock Vina software to predict the detailed molecular mechanism of Dahuang Fuzi decoction for treating IIO. Results: There are 45 active components in Dahuang Fuzi decoction, with 709 corresponding targets, 538 IIO targets, and 97 common targets, among which kaempferol, deltoin, and eupatin are the main active ingredients. 10 core targets were obtained by protein-protein interaction network analysis. Through GO enrichment analysis, it was found that Dahuang Fuzi decoction may be involved in biological processes such as signal transduction, anti-apoptosis, promotion of gene expression, regulation of cell proliferation, and differentiation. Besides, KEGG pathway analysis revealed that it mainly relates to PI3K-AKT signal pathway and HIF-1 signal pathway, etc. Molecular docking results showed that the active ingredients of Dahuang Fuzi decoction possess a good binding activity with the core targets. Conclusion: Dahuang Fuzi decoction may act on target genes such as TNF, IL6, AKT1, VEGFA, SRC, EGFR, and STAT3 through active ingredients such as kaempferol, deltoin, and eupatin to regulate signaling pathways such as PI3K-AKT and HIF-1 and reduce the expression of various inflammatory factors such as TNF-α, IL-6, iNOS, and COX-2 to play a role in the treatment of IIO.


Assuntos
Medicamentos de Ervas Chinesas , Obstrução Intestinal , Diterpenos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides , Humanos , Quempferóis/farmacologia , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
8.
Front Pharmacol ; 13: 806175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308206

RESUMO

Liver cancer is a global disease with a high mortality rate and limited treatment options. Alternations in apoptosis of tumor cells and immune cells have become an important method for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family, Caspase family, Fas and other apoptosis-related proteins have also become antagonistic targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites inhibiting the occurrence and development of HCC by inducing apoptosis is complicated owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs. Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC and apoptosis, the role and mechanism of apoptosis induced by mitochondrial endoplasmic reticulum pathway and death receptor pathway in HCC and the mechanism of six RR metabolites inhibiting HCC by inducing apoptosis.

9.
Pharm Biol ; 59(1): 1480-1489, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714209

RESUMO

CONTEXT: Bupleuri Radix, the dried root of Bupleurum chinense DC and Bupleurum scorzonerifolium Willd (Apiaceae), is an important medicinal herb widely used to treat cancers for hundreds of years in Asian countries. As the most antitumour component but also the main toxic component in Bupleuri Radix, saikosaponin D (SSD) has attracted extensive attention. However, no summary studies have been reported on the antitumour effects, toxicity and pharmacokinetics of this potential natural anticancer substance. OBJECTIVE: To analyse and summarise the existing findings regarding to the antitumour effects, toxicity and pharmacokinetics of SSD. MATERIALS AND METHODS: We collected relevant information published before April 2021 by conducting a search of literature available in various online databases including PubMed, Science Direct, CNKI, Wanfang database and the Chinese Biological Medicine Database. Bupleurum, Bupleuri Radix, saikosaponin, saikosaponin D, tumour, toxicity, and pharmacokinetics were used as the keywords. RESULTS: The antitumour effects of SSD were multi-targeted and can be realised through various mechanisms, including inhibition of proliferation, invasion, metastasis and angiogenesis, as well as induction of cell apoptosis, autophagy, and differentiation. The toxicological effects of SSD mainly included hepatotoxicity, neurotoxicity, haemolysis and cardiotoxicity. Pharmacokinetic studies demonstrated that SSD had the potential to alter the pharmacokinetics of some drugs for its influence on CYPs and P-gp, and the oral bioavailability and actual pharmacodynamic substances in vivo of SSD are still controversial. CONCLUSIONS: SSD is a potentially effective and relatively safe natural antitumour substance, but more research is needed, especially in vivo antitumour effects and pharmacokinetics of the compound.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bupleurum/química , Diferenciação Celular/efeitos dos fármacos , Humanos , Neoplasias/patologia , Ácido Oleanólico/efeitos adversos , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Saponinas/efeitos adversos , Saponinas/isolamento & purificação
10.
Front Chem ; 9: 682862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178945

RESUMO

Background: In recent years, the incidence and mortality rates of non-small cell lung cancer (NSCLC) have increased significantly. Shan Ci Gu is commonly used as an anticancer drug in traditional Chinese medicine; however, its specific mechanism against NSCLC has not yet been elucidated. Here, the mechanism was clarified through network pharmacology and molecular docking. Methods: The Traditional Chinese Medicine Systems Pharmacology database was searched for the active ingredients of Shan Ci Gu, and the relevant targets in the Swiss Target Prediction database were obtained according to the structure of the active ingredients. GeneCards were searched for NSCLC-related disease targets. We obtained the cross-target using VENNY to obtain the core targets. The core targets were imported into the Search Tool for the Retrieval of Interacting Genes/Proteins database, and Cytoscape software was used to operate a mesh chart. R software was used to analyze the Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The core targets and active compounds were molecularly docked through Auto-Dock Vina software to predict the detailed molecular mechanism of Shan Ci Gu for NSCLC treatment. We did a simple survival analysis with hub gene to assess the prognosis of NSCLC patients. Results: Three compounds were screened to obtain 143 target genes and 1,226 targets related to NSCLC, of which 56 genes were related to NSCLC treatment. Shan Ci Gu treatment for NSCLC involved many BPs and acted on main targets including epidermal growth factor receptor (EGFR), ESR1, and SRC through signaling pathways including the endocrine resistance, EGFR tyrosine kinase inhibitor resistance, and ErbB signaling pathways. Shan Ci Gu might be beneficial for treating NSCLC by inhibiting cell proliferation and migration. Molecular docking revealed that the active compounds ß-sitosterol, stigmasterol, and 2-methoxy-9,10-dihydrophenanthrene-4,5-diol had good affinity with the core target genes (EGFR, SRC, and ESR1). Core targets included EGFR, SRC, ESR1, ERBB2, MTOR, MCL1, matrix metalloproteinase 2 (MMP2), MMP9, KDR, and JAK2. Key KEGG pathways included endocrine resistance, EGFR tyrosine kinase inhibitor resistance, ErbB signaling, PI3K-Akt signaling, and Rap1 signaling pathways. These core targets and pathways have an inhibitory effect on the proliferation of NSCLC cells. Conclusion: Shan Ci Gu can treat NSCLC through a multi-target, multi-pathway molecular mechanism and effectively improve NSCLC prognosis. This study could serve as a reference for further mechanistic research on wider application of Shan Ci Gu for NSCLC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA