Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Cancer ; 24(1): 737, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879516

RESUMO

BACKGROUND: Bladder cancer (BC) is among the most prevalent malignant urothelial tumors globally, yet the prognosis for patients with muscle-invasive bladder cancer (MIBC) remains dismal, with a very poor 5-year survival rate. Consequently, identifying more effective and less toxic chemotherapeutic alternatives is critical for enhancing clinical outcomes for BC patients. Isorhapontigenin (ISO), a novel stilbene isolated from a Gnetum found in certain provinces of China, has shown potential as an anticancer agent due to its diverse anticancer activities. Despite its promising profile, the specific anticancer effects of ISO on BC and the underlying mechanisms are still largely unexplored. METHODS: The anchorage-independent growth, migration and invasion of BC cells were assessed by soft agar and transwell invasion assays, respectively. The RNA levels of SOX2, miR-129 and SNHG1 were quantified by qRT-PCR, while the protein expression levels were validated through Western blotting. Furthermore, methylation-specific PCR was employed to assess the methylation status of the miR-129 promoter. Functional assays utilized siRNA knockdown, plasmid-mediated overexpression, and chemical inhibition approaches. RESULTS: Our study demonstrated that ISO treatment significantly reduced SNHG1 expression in a dose- and time-dependent manner in BC cells, leading to the inhibition of anchorage-independent growth and invasion in human basal MIBC cells. This effect was accompanied by the downregulation of MMP-2 and MMP-9 and the upregulation of the tumor suppressor PTEN. Further mechanistic investigations revealed that SOX2, a key upstream regulator of SNHG1, played a crucial role in mediating the ISO-induced transcriptional suppression of SNHG1. Additionally, we found that ISO treatment led to a decrease in DNMT3b protein levels, which in turn mediated the hypomethylation of the miR-129 promoter and the subsequent suppression of SOX2 mRNA 3'-UTR activity, highlighting a novel pathway through which ISO exerts its anticancer effects. CONCLUSIONS: Collectively, our study highlights the critical role of SNHG1 downregulation as well as its upstream DNMT3b/miR-129/SOX2 axis in mediating ISO anticancer activity. These findings not only elucidate the mechanism of action of ISO but also suggest novel targets for BC therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3B , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Estilbenos , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Invasividade Neoplásica , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , MicroRNAs/genética
2.
Cell Death Dis ; 15(6): 435, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902235

RESUMO

5-Fluorouracil (5-FU) is the primary treatment option for advanced gastric cancer. However, the current challenge lies in the absence of validated biomarkers to accurately predict the efficacy and sensitivity of 5-FU in individual patients. It has been confirmed that 5-FU can regulate tumor progression by promoting gasdermin E (GSDME, encoded by DFNA5) cleavage to induce pyroptosis. Lysine demethylase ALKBH4 has been shown to be upregulated in a variety of tumors to promote tumor progression. However, its role in gastric cancer is not clear. In this study, we observed a significant upregulation of ALKBH4 expression in gastric cancer tissues compared to adjacent normal tissues, indicating its potential as a predictor for the poor prognosis of gastric cancer patients. On the contrary, GSDME exhibits low expression levels in gastric cancer and demonstrates a negative correlation with poor prognosis among patients diagnosed with gastric cancer. In addition, we also found that high expression of ALKBH4 can inhibit pyroptosis and promote the proliferation of gastric cancer cells. Mechanistically, ALKBH4 inhibits GSDME activation at the transcriptional level by inhibiting H3K4me3 histone modification in the GSDME promoter region, thereby reducing the sensitivity of gastric cancer cells to 5-FU treatment. These findings provide further insight into the regulatory mechanisms of ALKBH4 in the progression of gastric cancer and underscore its potential as a prognostic marker for predicting the sensitivity of gastric cancer cells to 5-FU treatment.


Assuntos
Fluoruracila , Piroptose , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Camundongos , Masculino , Histonas/metabolismo , Camundongos Nus , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Prognóstico , Gasderminas
3.
Cell Mol Biol Lett ; 29(1): 19, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267865

RESUMO

BACKGROUND: The tumor immune microenvironment (TIME) is an important regulator of tumor progression, growth and metastasis. In addition, tumor metastasis is one of the principal obstacles to the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) have been recognized as important regulators in the development of malignancies. However, their specific roles and mechanisms in both CRC metastasis and TIME have not been thoroughly investigated. METHODS: High-throughput next-generation sequencing technology and real-time fluorescence quantitative PCR technology were performed to identify differential circRNAs in CRC. Functional assays including transwell assay, wound healing assay, and metastasis models were conducted to assess the effect of circRNF216 on CRC metastasis. In addition, luciferase reporter, western blot, RNA immunoprecipitation (RIP), and fluorescent in situ hybridization (FISH) were performed to explore the underlying mechanism of circRNF216. The level of immune infiltration was assessed by bioinformatics analysis and flow cytometry in CRC model. Furthermore, rescue and mutation experiments were used for verification. RESULTS: circRNF216 was identified as a putative tumor suppressor that is downregulated in CRC tissues and cells. Overexpression of circRNF216 inhibits metastasis in vitro and vivo. Mechanistically, circRNF216 acts as a competitive endogenous RNA (ceRNA) for miR-576-5p, alleviating miR-576-5p repression on its target ZC3H12C, which in turn downregulated N-cadherin. Additionally, circRNF216 could enhance the infiltration level of CD8+ T cells by upregulating ZC3H12C, ultimately inhibiting the development of CRC, which suggests that circRNF216 is a potential biomarker for the treatment of CRC. CONCLUSIONS: Here, we provide novel mechanistic insight revealing how circRNF216 functioned in CRC metastasis and TIME via the circRNF216/miR-576-5p/ZC3H12C pathway. Therefore, circRNF216 holds promise as a potential therapeutic target and novel diagnostic marker for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Linfócitos T CD8-Positivos , Hibridização in Situ Fluorescente , RNA Circular/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , Microambiente Tumoral/genética
4.
Pharmacol Res ; 195: 106863, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480971

RESUMO

Human papillomavirus (HPV) infection is a causative agent of cervical cancer (CC). N6-methyladenosine (m6A) modification is implicated in carcinogenesis and tumor progression. However, the involvement of m6A modification in HPV-involved CC remains unclear. Here we showed that HPV E6/7 oncoproteins affected the global m6A modification and E7 specifically promoted the expression of ALKBH5. We found that ALKBH5 was significantly upregulated in CC and might serve as a valuable prognostic marker. Forced expression of ALKBH5 enhanced the malignant phenotypes of CC cells. Mechanistically, we discovered that E7 increased ALKBH5 expression through E2F1-mediated activation of the H3K27Ac and H3K4Me3 histone modifications, as well as post-translational modification mediated by DDX3. ALKBH5-mediated m6A demethylation enhanced the expression of PAK5. The m6A reader YTHDF2 bound to PAK5 mRNA and regulated its stability in an m6A-dependent manner. Moreover, ALKBH5 promoted tumorigenesis and metastasis of CC by regulating PAK5. Overall, our findings herein demonstrate a significant role of ALKBH5 in CC progression in HPV-positive cells. Thus, we propose that ALKBH5 may serve as a prognostic biomarker and therapeutic target for CC patients.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Infecções por Papillomavirus/genética , Carcinogênese/genética , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
5.
Front Pharmacol ; 14: 1186064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251324

RESUMO

Background: Tumors frequently evade immune surveillance through multiple pathways to escape T cell recognition and destruction. Previous studies indicated that lipid metabolism alteration could affect the anti-tumor immunity of cancer cells. Nonetheless, the studies that investigated lipid metabolism-related gene for cancer immunotherapy are still few. Materials and methods: By mining the TCGA database, we screened out carnitine palmitoyltransferase-2 (CPT2), a key enzyme in the fatty acid ß-oxidation (FAO) process associated with anti-tumor immunity. We then analyzed the gene expression and clinicopathological features of CPT2 using open-source platforms and databases. Molecular proteins interacting with CPT2 were also identified using web interaction tools. Subsequently, the relationship between CPT2 and survival was analyzed in cancer patients. Results: Our study revealed that CPT2 played a vital role in tumor microenvironment and immune response signaling pathways. We have also demonstrated that increased CPT2 gene expression could enhance the level of tumor immune cell infiltration. Furthermore, high CPT2 expression positively related with overall survival associated with immunotherapy. CPT2 expression was also associated with the prognosis of human cancers, suggesting that CPT2 may be a potential biomarker for predicting the efficacy of cancer immunotherapy. Conclusion: To the best of our knowledge, the relationship between CPT2 and tumor immune microenvironment was first proposed in this study. Therefore, further studies on CPT2 may provide new insights into the development of effective cancer immunotherapy.

6.
Acta Pharmacol Sin ; 44(9): 1890-1905, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37095198

RESUMO

Due to poor T cell infiltration, tumors evade immune surveillance. Increased CD8+ T cell infiltration in breast cancer suggests a satisfactory response to immunotherapy. COPS6 has been identified as an oncogene, but its role in regulating antitumor immune responses has not been defined. In this study, we investigated the impact of COPS6 on tumor immune evasion in vivo. Tumor transplantation models were established in C57BL/6 J mice and BALB/c nude mice. Flow cytometry was conducted to identify the role of COPS6 on tumor-infiltrating CD8+ T cells. By analyzing the TCGA and GTEx cohort, we found that COPS6 expression was significantly up-regulated in a variety of cancers. In human osteosarcoma cell line U2OS and non-small cell lung cancer cell line H1299, we showed that p53 negatively regulated COPS6 promoter activity. In human breast cancer MCF-7 cells, COPS6 overexpression stimulated p-AKT expression as well as the proliferation and malignant transformation of tumor cells, whereas knockdown of COPS6 caused opposite effects. Knockdown of COPS6 also significantly suppressed the growth of mouse mammary cancer EMT6 xenografts in BALB/c nude mice. Bioinformatics analysis suggested that COPS6 was a mediator of IL-6 production in the tumor microenvironment and a negative regulator of CD8+ T cell tumor infiltration in breast cancer. In C57BL6 mice bearing EMT6 xenografts, COPS6 knockdown in the EMT6 cells increased the number of tumor-infiltrating CD8+ T cells, while knockdown of IL-6 in COPS6KD EMT6 cells diminished tumor infiltrating CD8+ T cells. We conclude that COPS6 promotes breast cancer progression by reducing CD8+ T cell infiltration and function via the regulation of IL-6 secretion. This study clarifies the role of p53/COPS6/IL-6/CD8+ tumor infiltrating lymphocytes signaling in breast cancer progression and immune evasion, opening a new path for development of COPS6-targeting therapies to enhance tumor immunogenicity and treat immunologically "cold" breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Feminino , Linfócitos T CD8-Positivos/metabolismo , Neoplasias da Mama/patologia , Interleucina-6/metabolismo , Camundongos Nus , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Evasão Tumoral , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Linhagem Celular Tumoral , Complexo do Signalossomo COP9/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Oncogene ; 41(39): 4420-4432, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987795

RESUMO

N6-methyladenosine (m6A) is the most abundant chemical modification on mRNA and plays significant roles in many bioprocesses. However, the functions of m6A on cervical cancer (CC) tumorigenesis remain unclear. Here we found methyltransferase-like 3 (METTL3), a core member of the m6A methyltransferase family, was greatly upregulated as an independent prognostic factor in CC. Mechanistically, the transcription factor ETS1 recruited P300 and WDR5 which separately mediated H3K27ac and H3K4me3 histone modification in the promoter of METTL3 and induced METTL3 transcription activation. Furthermore, we identified TXNDC5 as a target of METTL3-mediated m6A modification through MeRIP-seq, and revealed that METTL3-mediated TXNDC5 expression relied on the m6A reader-dependent manner. Functionally, we verified that METTL3 promoted proliferation and metastasis of CC cells by regulating of TXNDC5 expression through in vitro and in vivo experiments. In addition, our study verified the effect of METTL3/TXNDC5 axis on ER stress. Taken together, METTL3 facilitates the malignant progression of CC, suggesting that METTL3 might be a potential prognostic biomarker and therapeutic target for CC.


Assuntos
Neoplasias do Colo do Útero , Biomarcadores , Estresse do Retículo Endoplasmático , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Metiltransferases/genética , Metiltransferases/metabolismo , Isomerases de Dissulfetos de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição , Neoplasias do Colo do Útero/genética
8.
Cancer Biol Med ; 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35315259

RESUMO

The COP9 signalosome (CSN) is a highly conserved protein complex composed of 8 subunits (CSN1 to CSN8). The individual subunits of the CSN play essential roles in cell proliferation, tumorigenesis, cell cycle regulation, DNA damage repair, angiogenesis, and microenvironmental homeostasis. The CSN complex has an intrinsic metalloprotease that removes the ubiquitin-like activator NEDD8 from cullin-RING ligases (CRLs). Binding of neddylated CRLs to CSN is sensed by CSN4 and communicated to CSN5 with the assistance of CSN6, thus leading to the activation of deneddylase. Therefore, CSN is a crucial regulator at the intersection between neddylation and ubiquitination in cancer progression. Here, we summarize current understanding of the roles of individual CSN subunits in cancer progression. Furthermore, we explain how the CSN affects tumorigenesis through regulating transcription factors and the cell cycle. Finally, we discuss individual CSN subunits as potential therapeutic targets to provide new directions and strategies for cancer therapy.

9.
J Biomed Sci ; 28(1): 56, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34340705

RESUMO

BACKGROUND: Sorafenib is a kinase inhibitor that is used as a first-line therapy in advanced hepatocellular carcinoma (HCC) patients. However, the existence of sorafenib resistance has limited its therapeutic effect. Through RNA sequencing, we demonstrated that miR-138-1-3p was downregulated in sorafenib resistant HCC cell lines. This study aimed to investigate the role of miR-138-1-3p in sorafenib resistance of HCC. METHODS: In this study, quantitative real-time PCR (qPCR) and Western Blot were utilized to detect the levels of PAK5 in sorafenib-resistant HCC cells and parental cells. The biological functions of miR-138-1-3p and PAK5 in sorafenib-resistant cells and their parental cells were explored by cell viability assays and flow cytometric analyses. The mechanisms for the involvement of PAK5 were examined via co-immunoprecipitation (co-IP), immunofluorescence, dual luciferase reporter assay and chromatin immunoprecipitation (ChIP). The effects of miR-138-1-3p and PAK5 on HCC sorafenib resistant characteristics were investigated by a xenotransplantation model. RESULTS: We detected significant down-regulation of miR-138-1-3p and up-regulation of PAK5 in sorafenib-resistance HCC cell lines. Mechanistic studies revealed that miR-138-1-3p reduced the protein expression of PAK5 by directly targeting the 3'-UTR of PAK5 mRNA. In addition, we verified that PAK5 enhanced the phosphorylation and nuclear translocation of ß-catenin that increased the transcriptional activity of a multidrug resistance protein ABCB1. CONCLUSIONS: PAK5 contributed to the sorafenib resistant characteristics of HCC via ß-catenin/ABCB1 signaling pathway. Our findings identified the correlation between miR-138-1-3p and PAK5 and the molecular mechanisms of PAK5-mediated sorafenib resistance in HCC, which provided a potential therapeutic target in advanced HCC patients.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Animais , Antineoplásicos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
11.
Oncol Lett ; 21(6): 462, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33907572

RESUMO

[This corrects the article DOI: 10.3892/ol.2018.7987.].

12.
Neural Regen Res ; 16(11): 2170-2176, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818489

RESUMO

Peripheral nerve injuries occur as the result of sudden trauma and lead to reduced quality of life. The peripheral nervous system has an inherent capability to regenerate axons. However, peripheral nerve regeneration following injury is generally slow and incomplete that results in poor functional outcomes such as muscle atrophy. Although conventional surgical procedures for peripheral nerve injuries present many benefits, there are still several limitations including scarring, difficult accessibility to donor nerve, neuroma formation and a need to sacrifice the autologous nerve. For many years, other therapeutic approaches for peripheral nerve injuries have been explored, the most notable being the replacement of Schwann cells, the glial cells responsible for clearing out debris from the site of injury. Introducing cultured Schwann cells to the injured sites showed great benefits in promoting axonal regeneration and functional recovery. However, there are limited sources of Schwann cells for extraction and difficulties in culturing Schwann cells in vitro. Therefore, novel therapeutic avenues that offer maximum benefits for the treatment of peripheral nerve injuries should be investigated. This review focused on strategies using mesenchymal stem cells to promote peripheral nerve regeneration including exosomes of mesenchymal stem cells, nerve engineering using the nerve guidance conduits containing mesenchymal stem cells, and genetically engineered mesenchymal stem cells. We present the current progress of mesenchymal stem cell treatment of peripheral nerve injuries.

14.
Int J Med Sci ; 17(17): 2809-2818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162808

RESUMO

Background: CSN6, a subunit of the highly conserved constitutive photomorphogenesis 9 (COP9) signalosome (CSN), has been reported to be implicated in tumor progression in various kinds of malignant tumors. However, the mechanism underlying CSN6 in the tumor development of breast cancer has not yet been fully elucidated. Methods: CSN6 staining in breast cancer tissues and paracancerous tissues was measured by tissue microarray (TMA) technology. The metastatic effect of CSN6 was measured by cell migration assay. Co-immunoprecipitation study was used to show the interaction between the protein CSN6 and Snail1. Ubiquitination assay was performed to validate whether ubiquitination is involved in the upregulation of Snail1 by CSN6. The impact of CSN6 on tumor metastasis in vivo was analyzed using xenotransplantation experiments in BALB/c mice. Results: Here, we demonstrated that CSN6 expression was dramatically increased in breast cancer tissues compared with paired adjacent cancerous tissues. CSN6 promoted the cell migration and wound healing abilities in breast cancer cell lines. Also we showed that CSN6 associates with Snail1 and enhances Snail1 protein level by inhibiting the ubiquitin-mediated degradation of Snail1. Thus, CSN6 is involved in positively regulating the stability of Snail1. We further proved that CSN6 protein level was positively correlated with the Snail1 expression in xenograft model. Conclusion: These findings provide new insight into applicability of using the CSN6-Snail1 axis as a potential therapeutic target in breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/genética , Complexo do Signalossomo COP9/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição da Família Snail/metabolismo , Animais , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Quimioterapia Adjuvante , Feminino , Humanos , Mastectomia , Camundongos , Pessoa de Meia-Idade , Estabilidade Proteica , Análise Serial de Tecidos , Ubiquitinação/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Gastric Cancer ; 23(6): 1003-1017, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32458234

RESUMO

BACKGROUND: Jab1 has been reported to regulate various proteins in signal transduction pathways and be implicated in carcinogenesis or tumor progression. However, the precise role and molecular mechanism of Jab1 in gastric tumorigenesis have not yet been fully elucidated. METHODS: Jab1 staining in gastric cancer tissues and paired non-cancerous tissues was measured using tissue microarray (TMA) technology. The impact of Jab1 on tumor growth in vivo was analyzed using xenotransplantation experiments in Balb/c mice. The expression of Jab1 and p14ARF in gastric cancer cells was analyzed by western blot and confocal immunofluorescence. CCK-8 and cell cycle experiment were used to evaluate the cell proliferation. Ubiquitination assay was performed to validate whether ubiquitination is involved in Jab1-mediated p14ARF degradation. RESULTS: The expression level of protein p14ARF was inversely correlated with the protein level of Jab1. Then, we investigated the mechanism that how Jab1 induced p14ARF depletion. Mechanistic studies showed that Jab1 induced ubiquitin-independent proteasomal p14ARF degradation in gastric cancer cells. Our data demonstrated that Jab1 protein was a vital upstream negative modulation factor of p14ARF, and Jab1 could promote cell proliferation and tumor growth via inhibiting the expression of p14ARF in vivo and in vitro. Moreover, silencing Jab1 protein expression declined tumor growth and further increased the apoptosis rate of gastric cancer cells. In further studies of gastric cancer specimens, we found the increased level of Jab1 protein shortened the overall survival. CONCLUSION: Jab1 is upstream of p14ARF and promote gastric cancer cell proliferation in vitro and in vivo. Furthermore, Jab1 decreased the expression of p14ARF though ubiquitination independent proteasomal degradation. Therefore, the connection of Jab1 and p14ARF may provide new methods for the treatment of gastric cancer.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Carcinogênese/genética , Peptídeo Hidrolases/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ubiquitinação
16.
Cancer Biol Med ; 16(3): 514-529, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31565481

RESUMO

OBJECTIVE: CSN6 is a vital subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), which is responsible for development disorders and promotes ubiquitin-26S proteasome-dependent degradation in vitro and vivo. Its role in the tumor development of gastric cancer remains unclear. In this study, we investigated the role of CSN6 in gastric cancer progression. METHODS: Human gastric cancer samples were collected and immunohistochemistry was performed to identify the role of CSN6 in gastric cancer. The cell proliferation was measured by CCK-8 and the EdU incorporation method. Immunofluorescence localization and a co-immunoprecipitation study were used to show the interaction between the protein CSN6 and p16. Ubiquitination assay was performed to validate whether ubiquitination is involved in CSN6-mediated p16 degradation. BALB/c nude mice were used to produce a tumor model in order to test the effect of CSN6 on cancer growth in vivo. RESULTS: CSN6 expression was dramatically increased in gastric cancer tissues compared with paired adjacent non-tumor tissues and CSN6 was correlated with worse overall and disease-specific survival. Additionally, we also found that CSN6 downregulated p16 protein expression, thereby promoting gastric cancer cell growth and proliferation. Moreover, CSN6 interacted with p16 and a proteasome activator REGγ (PA28γ), thereby facilitating ubiquitin-independent degradation of p16. CONCLUSIONS: CSN6 promoted the loss of p16-mediated tumor progression and played an important role in regulating ubiquitin-independent proteasomal degradation of p16.

17.
Oncol Lett ; 15(4): 5352-5358, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552178

RESUMO

Ras-related protein (Rap)2a and Rap2b are members of the GTP-binding protein family, and serve an important function in tumor progression. However, the associations between Rap2c and cancer cell functions have not yet been reported. Osteosarcoma is a type of bone cancer; its high degree of invasion is considered to be a major treatment challenge. The present study first investigated the biological role of Rap2c in human osteosarcoma cells and investigated the underlying mechanism of Rap2c on osteosarcoma cell migration and invasion. The results of the present study demonstrated that Rap2c overexpression promoted the migratory and invasive ability of cancer cells, and increased the activity of matrix metalloproteinase-2 (MMP2). Correspondingly, the knockdown of Rap2c inhibited tumor cell migration and invasion, whereas alterations to Rap2c had no effect on osteosarcoma cell proliferation or rate of apoptosis. Furthermore, Rap2c overexpression may decrease the protein level of tissue inhibitor of metalloproteinases 2 and increase the phosphorylation level of protein kinase B (Akt). Collectively, these results indicated that Rap2c has a key function in tumor migration and invasion, and the Akt signaling pathway may be involved in Rap2c-induced MMP2 expression.

18.
Ecotoxicol Environ Saf ; 152: 91-97, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29407786

RESUMO

Rice consumption is considered the main source of human dietary Cd intake in Southeast Asia. This study aimed to investigate Cd uptake, accumulation, and remobilization in iron plaque and rice (Oryza sativa L. cv. 'Xiangwanxian 12') tissues at different growth stages. A pot experiment was performed in two Cd-contaminated paddy soils. Cd concentrations in iron plaque and rice tissues at five different growth stages (tillering, booting, milky, dough, and maturing) were measured. Cd concentrations in iron plaque and rice tissues (roots, stems, leaves, spikelet, husks, and brown rice) varied with growth stage. Cd accumulation in rice plants increased with extending growth in both soils, reaching 15.3 and 35.4µg/pot, respectively, at the maturing stage. The amounts of Cd in brown rice increased from the milky to maturing stages, with the greatest percentage uptake during the maturing stage. Cd amount in iron plaque significantly affected the uptake and accumulation of Cd in roots and aerial parts of rice plants. Accumulated Cd in leaves was remobilized and transported during the booting to maturing stages, and the contributions of Cd transportation from leaves to brown rice were 30.0% and 22.5% in the two soils, respectively. A large amount of Cd accumulated in brown rice during the maturing stage. The transportation of remobilized Cd from leaves was also important for the accumulation of Cd in brown rice.


Assuntos
Cádmio/análise , Ferro/metabolismo , Oryza/efeitos dos fármacos , Poluentes do Solo/análise , Transporte Biológico , Cádmio/metabolismo , Humanos , Oryza/química , Oryza/crescimento & desenvolvimento , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/metabolismo
19.
Sci Rep ; 7(1): 6623, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747626

RESUMO

Rap2a, a member of the small GTPase superfamily, belongs to Ras superfamily, and its function in cancer progression is still poorly understood. Our previous study indicated that the ectopic expression of Rap2a enhanced the migration and invasion ability of lung cancer cells. However, its expression and molecular mechanism on renal cell carcinoma (RCC) have not been characterized. This study explored the clinical significance and biological function of Rap2a in human RCC. The clinical relevance of Rap2a in RCC was evaluated by immunohistochemical staining using tissue microarray. Our data showed that Rap2a expression was dramatically increased in RCC tissues compared with normal renal tissues. The ectopic expression of Rap2a enhanced the migration and invasive ability of cancer cells. In contrast, downregulation of Rap2a inhibited cell invasion. Rap2a had no effect on the proliferation of RCC cell lines. Meanwhile, Rap2a can regulate the phosphorylation level of Akt in vitro. In vivo studies also showed that Rap2a positively regulated metastasis of renal cancer cells and the expression of p-Akt. These findings indicate that Rap2a promotes RCC metastasis and may serve as a candidate RCC prognostic marker and a potential therapeutic target.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/patologia , Proteínas rap de Ligação ao GTP/análise , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise Serial de Tecidos
20.
Huan Jing Ke Xue ; 38(12): 5299-5307, 2017 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964594

RESUMO

The impacts of silicon (Si) on cadmium (Cd) bioavailability in soil and Cd accumulation in rice plants were investigated in pot experiments with rice (Oryza sativa L.) cultivation. Silicon fertilizer as the base manure (Si 0, 15, 30, and 60 mg·kg-1) was added in simulated slightly Cd-contaminated soil (total soil Cd of 0.72 mg·kg-1) and severe Cd-contaminated soil (total soil Cd of 5.08 mg·kg-1). It indicated that the application of 15-60 mg·kg-1 Si before the rice was transplanted improved soil pH values and reduced the contents of exchangeable-Cd and TCLP extractable-Cd in the soil by 24.2%-43.7% and 12.7%-46.8%, respectively, during the rice growing stages. The reduction in soil Cd bioavailability resulted from the complexing of Si and Cd, and the reduction followed the order:slightly Cd-contaminated soil > severely Cd-contaminated soil. It was obvious that silicon fertilizer improved rice biomass above ground, especially for rice grain yield. In the slightly Cd-contaminated soil, Si both promoted and restrained soil Cd transportation from the rice root to the shoot; the low application (Si 15 mg·kg-1) and high application (Si 60 mg·kg-1) of Si both promoted Cd transportation, but the medium application (Si 30 mg·kg-1) restrained Cd transportation. With increasing silicon fertilizer application, Cd contents in brown rice increased first and then decreased, ranging from 0.07-0.15 mg·kg-1, remaining lower than 0.2 mg·kg-1. In the severely Cd-contaminated soil, Si restrained the soil Cd transportation from the rice root to the shoot. The Cd contents in brown rice, husk, and straw were reduced by 38.7%-48.5%, 35.7%-70.7%, and 30.9%-40.7%, respectively, and Cd contents in brown rice were 0.23-0.28 mg·kg-1. Considering rice grain yields and Cd contents in brown rice, it was recommended that the Si application be 30 mg·kg-1 of Si in the slightly Cd-contaminated soil and Si 15-60 mg·kg-1 in the severely Cd-contaminated soil.


Assuntos
Cádmio/análise , Fertilizantes , Oryza/metabolismo , Poluentes do Solo/análise , Solo/química , Disponibilidade Biológica , Esterco , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA