Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 630: 122432, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36435503

RESUMO

Cancer chemotherapy is often accompanied by severe off-target effects that both damage quality of life and can decrease therapeutic compliance. This could be minimized through selective delivery of cytotoxic agents directly to the cancer cells. This would decrease the drug dose, consequently minimizing side effects and cost. With this goal in mind, a dual-gated folate-functionalized nanodiamond drug delivery system (NPFSSD) for doxorubicin with activatable fluorescence and cytotoxicity has been prepared. Both the cytotoxic activity and the fluorescence of doxorubicin (DOX) are quenched when it is covalently immobilized on the nanodiamond. The NPFSSD is preferentially uptaken by cancer cells overexpressing the folate receptor. Then, once inside a cell, the drug is preferentially released within tumor cells due to their high levels of endogenous of glutathione, required for releasing DOX through cleavage of a disulfide linker. Interestingly, once free DOX is loaded onto the nanodiamond, it can also evade resistance mechanisms that use protein pumps to remove drugs from the cytoplasm. This nanodrug, used in an in vivo model with local injection of drugs, effectively inhibits tumor growth with fewer side effects than direct injection of free DOX, providing a potentially powerful platform to improve therapeutic outcomes.


Assuntos
Nanodiamantes , Nanopartículas , Pró-Fármacos , Pró-Fármacos/farmacologia , Liberação Controlada de Fármacos , Qualidade de Vida , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Ácido Fólico/farmacologia
2.
Micromachines (Basel) ; 12(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669372

RESUMO

Electric cell-substrate impedance sensing exhibits a real-time and label-free feature to monitor the response of cells stimulated by various biochemical and mechanical signals. Alterations in the currents passing through the cell-electrode system characterize the impedance variations of cells. The impedance responses of HeLa cells under distinct chemotherapy drugs combine the effects of cell proliferation and cell-substrate adhesion. Optimal interdigitated electrodes were selected to explore the impedance responses of HeLa cells. Measurements of impedance of cells in response to three widely used chemotherapy drugs in clinical practice, namely cisplatin, doxorubicin, 5-fluorouracil, were performed. The results demonstrated that distinct impedance responses of HeLa cells to drugs were exhibited and a decrease in measured impedance was observed after drug treatment, accompanied by alterations in the distribution and intensity of the adhesion-related protein vinculin and the rate of cell proliferation. The link between the impedance profiles of HeLa cells and their biological functions was developed based on the circuit model. This study demonstrated the weights of cell proliferation and adhesion of HeLa cells under the treatments of DDP, DOX, and 5-FU, resulted in distinct impedance responses of cells, providing an impedance-based evaluation methodology for cervical cancer treatment.

3.
Biomed Mater ; 16(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260171

RESUMO

Circulating tumor cells (CTCs) are regarded as an effective biomarker for cancer detection, diagnosis and prognosis monitoring. CTCs capture based on nanostructured substrates is a powerful technique. Some specific adhesion molecule antibody coated on the surface of nanostructured substrates, such as EpCAM, is commonly used to enhance the CTCs capture efficiency. Substrate nanotopographies regulate the interaction between the substrates and captured cells, further influencing cell capture efficiency. However, the relationship between cell capture efficiency and cell-substrate interaction remains poorly understood. Here, we explored the relationship between cell capture efficiency and cell-substrate interaction based on two sets of nanostructures with different nanotopographies without antibody conjugation. Given the urgent demand for improving the capture efficiency of EpCAM-negative cells, we used HeLa (EpCAM-negative) cells as the main targets. We demonstrated that HeLa cells could be more effectively captured by two nanostructural substrates, especially by double-layer composite nanoforests. Therefore, the morphological and migrating interaction between HeLa cells and distinct substrates was associated with cell capture efficiency. Our findings demonstrated the potential mechanism for optimizing the nanotopography for higher capture efficiency, and provide a potential foundation for cancer detection, diagnosis and treatment.


Assuntos
Nanoestruturas , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/métodos , Células HeLa , Humanos , Nanoestruturas/química , Células Neoplásicas Circulantes/patologia
4.
J Mater Chem B ; 8(8): 1660-1671, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32011619

RESUMO

Enhancing tumor homing and improving the efficacy of drugs are urgent needs for cancer treatment. Herein a novel targeted, intracellularly activatable fluorescence and cytotoxicity nanodiamond (ND) drug system (ND-PEG-HYD-FA/DOX, NPHF/D) was successfully prepared based on doxorubicin (DOX) and folate (FA) covalently bound to PEGylated NDs, in which the DOX was covalently coupled via an intracellularly hydrolyzable hydrazone bond that was stable in the physiological environment to ensure minimal drug release in circulation. Cell uptake studies demonstrated the selective internalization of NPHF/D by folate receptor (FR) mediated endocytosis in the order MCF-7 > HeLa > HepG2 ≫ CHO, using confocal laser scanning microscopy (CLSM) and flow cytometry. Interestingly, the DOX fluorescence of NPHF/D was significantly quenched, while the fluorescence recovery and cytotoxicity took place by low pH regulation in intracellular lysosomes, which made NPHF/D act as a fluorescence OFF-ON messenger for activatable imaging and cancer therapy. Of note, NPHF/D significantly inhibited the growth of tumors. Simultaneously, it was demonstrated that the introduction of FA and the cleavability of the hydrazone greatly enhanced the therapeutic performance of NPHF/D. In addition, toxicity studies in mice verified that the composites were devoid of any detected hepatotoxicity, cardiotoxicity, and nephrotoxicity using histopathology and blood biochemistry studies. Our work provides a novel strategy for cancer therapy, using ND-conjugated cancer drugs, and the exploration of theranostic drug-delivery systems.


Assuntos
Antineoplásicos/química , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Nanodiamantes/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Endocitose , Ácido Fólico/análogos & derivados , Ácido Fólico/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis/química , Nanomedicina Teranóstica , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA