Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biomed Pharmacother ; 174: 116486, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520865

RESUMO

Recurrence and metastasis of gastric cancer is a major therapeutic challenge for treatment. The presence of cancer stem cells (CSCs) is a major obstacle to the success of current cancer therapy, often leading to treatment resistance and tumor recurrence and metastasis. Therefore, it is important to develop effective strategies to eradicate CSCs. In this study, we developed a combined therapeutic strategy of photothermal therapy (PTT) and gastric cancer stem cells (GCSCs) inhibition by successfully synthesizing nanoliposomes loaded with IR780 (photosensitizer) and EN4 (c-Myc inhibitor). The nanocomposites are biocompatible and exhibit superior photoacoustic (PA) imaging properties. Under laser irradiation, IR780-mediated PTT effectively and rapidly killed tumor cells, while EN4 synergistically inhibited the self-renewal and stemness of GCSCs by suppressing the expression and activity of the pluripotent transcription factor c-Myc, preventing the tumor progression of gastric cancer. This Nano-EN-IR@Lip is expected to be a novel clinical nanomedicine for the integration of gastric cancer diagnosis, treatment and prevention.


Assuntos
Lipossomos , Células-Tronco Neoplásicas , Fármacos Fotossensibilizantes , Terapia Fototérmica , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Neoplasias Gástricas/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Humanos , Terapia Fototérmica/métodos , Animais , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Indóis/farmacologia , Indóis/química , Nanopartículas/química , Camundongos Nus , Terapia Combinada , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Nanocompostos/química
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166727, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137433

RESUMO

Cancer-associated fibroblasts (CAFs) are the predominant stromal cells in the microenvironment and play important roles in tumor progression, including chemoresistance. However, the response of CAFs to chemotherapeutics and their effects on chemotherapeutic outcomes are largely unknown. In this study, we showed that epirubicin (EPI) treatment triggered ROS which initiated autophagy in CAFs, TCF12 inhibited autophagy flux and further promoted exosome secretion. Inhibition of EPI-induced reactive oxygen species (ROS) production with N-acetyl-L-cysteine (NAC) or suppression of autophagic initiation with short interfering RNA (siRNA) against ATG5 blunted exosome release from CAFs. Furthermore, exosome secreted from EPI-treated CAFs not only prevented ROS accumulation in CAFs but also upregulated the CXCR4 and c-Myc protein levels in recipient ER+ breast cancer cells, thus promoting EPI resistance of tumor cells. Together, the current study provides novel insights into the role of stressed CAFs in promoting tumor chemoresistance and reveal a new function of TCF12 in regulating autophagy impairment and exosome release.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Exossomos , Humanos , Feminino , Fibroblastos Associados a Câncer/patologia , Neoplasias da Mama/patologia , Epirubicina/farmacologia , Epirubicina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/metabolismo , Exossomos/metabolismo , Microambiente Tumoral , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Dis Markers ; 2021: 6331994, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136020

RESUMO

OBJECTIVE: To demonstrate whether procalcitonin (PCT) combined with calcitonin (CT) could provide additional diagnostic value to other clinically available rheumatoid arthritis- (RA-) related biomarkers in the early diagnosis of RA. METHOD: The blood samples aseptically collected by venipuncture were centrifuged within 1 hour and frozen at -80°C. PCT and CT levels were measured using electrochemiluminescence immunoassay (ECLIA) in 260 subjects (48 patients with early RA, 34 patients with established RA, 37 patients with systemic lupus erythematosus, 30 with osteoarthritis, 31 with gouty arthritis, and 80 healthy participants). Anti-cyclic citrullinated peptide (Anti-CCP) and anti-RA33 antibodies (Anti-RA33) were analyzed by ELISA. RF was detected by transmission immunoturbidimetry. Mann-Whitney U tests and Kruskal-Wallis tests compared differences among groups. Spearman's rank correlation analysis determined the relationship between biomarkers. Receiver-operator characteristic (ROC) curves were generated, and diagnostic performance was assessed by area under the curve (AUC), as well as specificity, sensitivity, likelihood ratios (LR). RESULTS: Median serum PCT concentrations were significantly higher (p < 0.0001) in patients with early RA (0.065 ng/ml) when compared with healthy controls (0.024 ng/ml), and patients with osteoarthritis (0.025 ng/ml). When compared with gouty arthritis (GA) controls (0.072 ng/ml) and systemic lupus erythematosus (SLE) controls (0.093 ng/ml), median serum PCT concentrations were not significant in patients with early RA (0.065 ng/ml). Median serum CT concentrations were significantly lower (p < 0.0001) in patients with early RA (0.880 pg/ml) compared with healthy controls (3.159 pg/ml), patients with SLE (2.480 pg/ml), and patients with GA (2.550 pg/ml). When compared with osteoarthritis controls (0.586 pg/ml), median serum CT concentrations were not significant in patients with early RA (0.880 pg/ml). ROC curve analysis comparing early RA with healthy controls demonstrated that the AUC of RF, anti-CCP, and anti-RA33 were 0.66, 0.73, and 0.64, respectively; the additions of PCT and CT further improved the diagnostic ability of early RA with the AUC of 0.97, 0.98, and 0.97, respectively (p < 0.01). The sensitivities of RF, anti-CCP, and anti-RA33 for early RA were 33.33%, 44.74%, and 58.33%, respectively, and the additions of PCT and CT showed very high sensitivities of 83.33%, 92.11%, and 87.50%. The high-value groups of PCT moderately correlated with the anti-RA33 levels (r = 0.417, p < 0.05). CT had no significant correlation with disease duration, radiographic progression, or clinical/serological variables, such as ESR levels, CRP levels, RF, anti-CCP, and anti-RA33 levels in early RA. CONCLUSIONS: Serum PCT and CT combined with clinically available RA-related biomarkers could further improve the diagnostic efficiency of early RA.


Assuntos
Artrite Gotosa/sangue , Artrite Reumatoide/diagnóstico , Biomarcadores/sangue , Peptídeo Relacionado com Gene de Calcitonina/sangue , Lúpus Eritematoso Sistêmico/sangue , Osteoartrite/sangue , Pró-Calcitonina/sangue , Adulto , Idoso , Artrite Reumatoide/sangue , Estudos de Casos e Controles , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
4.
Cell Death Differ ; 28(9): 2708-2727, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33875796

RESUMO

The aberrant classical miRNAs are considered to play significant roles in tumor progression. However, it remains unclear for nonclassical miRNAs, a set of Drosha-independent miRNAs in the process of various biology. Here, we reveal that a nonclassical miR-4646-5p plays a pivotal role in gastric cancer (GC) metastasis. MiR-4646-5p, one of Drosha-independent mirtronic miRNA, is aberrant up-regulated in Drosha-low expressed GC and Drosha-knockdown gastric cancer cells. Mirtronic miR-4646-5p is a specific transcription splicing product of intron 3 of the host gene Abhd16a with the aid of SRSF2. The enhanced miR-4646-5p can stabilize HIF1A by targeting PHD3 to positive feedback regulate Abhd16a and miR-4646-5p itself expressions. ABHD16A, as an emerging phosphatidylserine-specific lipase, involves in lipid metabolism leading to lysophosphatidylserines (lyso-PSs) accumulation, which stimulates RhoA and downstream LIMK/cofilin cascade activity through GPR34/Gi subunit, thus causes metastasis of gastric cancer. In addition, miR-4646-5p/PHD3/HIF1A signaling can also up-regulate RhoA expression and synergistically promote gastric cancer cell invasion and metastasis. Our study provides new insights of nonclassical mirtronic miRNA on tumor progress and may serve as a new diagnostic biomarker for gastric cancer. MiR-4646-5p and its host gene Abhd16a mediated abnormal lipid metabolism may be a new target for clinical treatment of gastric cancer.


Assuntos
Lisofosfolipídeos/metabolismo , Metabolômica/métodos , Monoacilglicerol Lipases/metabolismo , Neoplasias Gástricas/genética , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Gástricas/patologia , Transfecção
5.
Cancer Lett ; 478: 8-21, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32142918

RESUMO

Drosha-dependent canonical microRNAs (miRNAs) play a crucial role in the biological functions and development of cancer. However, the effects of Drosha-independent non-canonical miRNAs remain poorly understood. In our previous work, we found a set of aberrant miRNAs, including some upregulated miRNAs, called Drosha-independent noncanonical miRNAs, in Drosha-knockdown gastric cancer (GC) cells. Surprisingly, Drosha-silenced GC cells still retained strong malignant properties (e.g., proliferation ability and cancer stem cell (CSC) characteristics), indicating that aberrantly upregulated non-canonical miRNAs may play an important role in the maintenance of the malignant properties in GC cells that express low Drosha levels. Here, we report that miR-6778-5p, a noncanonical miRNA, acts as a crucial regulator for maintenance of CSC stemness in Drosha-silenced GC cells. MiR-6778-5p belongs to the 5'-tail mirtron type of non-canonical miRNAs and is transcript splice-derived from intron 5 of SHMT1 (coding cytoplasmic serine hydroxymethyltransferase). It positively regulates expression of its host gene, SHMT1, via targeting YWHAE in Drosha-knockdown GC cells. Similar to its family member SHMT2, SHMT1 plays a crucial role in folate-dependent serine/glycine inter-conversion in one-carbon metabolism. In Drosha wild type GC cells, SHMT2 mediates a mitochondrial-carbon metabolic pathway, which is a major pathway of one-carbon metabolism in normal cells and most cancer cells. However, in Drosha-silenced or Drosha low-expressing GC cells, miR-6778-5p positively regulates SHMT1, instead of SHMT2, thus mediating a compensatory activation of cytoplasmic carbon metabolism that plays an essential role in the maintenance of CSCs in gastric cancer (GCSCs). Drosha wild type GCSCs with SHMT2 are sensitive to 5-fluorouracil; however, Drosha low-expressing GCSCs with SHMT1 are 5-FU-resistant. The loss of miR-6778-5p or SHMT1 notably mitigates GCSC sphere formation and increases sensitivity to 5-fluorouracil in Drosha-knockdown gastric cancer cells. Thus, our study reveals a novel function of Drosha-independent noncanonical miRNAs in maintaining the stemness of GCSCs.


Assuntos
Carbono/metabolismo , Ácido Fólico/metabolismo , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Ribonuclease III/genética , Neoplasias Gástricas/patologia , Proteínas 14-3-3/genética , Animais , Linhagem Celular Tumoral , Citosol , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina Hidroximetiltransferase/genética , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima
6.
Theranostics ; 7(16): 3972-3988, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109792

RESUMO

Tumor microenvironment contributes to tumor angiogenesis. However, the role of the activated cancer associated-fibroblasts (CAFs) in angiogenesis is still unclear. Here we report that miR-205/YAP1 signaling in the activated stromal fibroblasts plays a critical role in VEGF-independent angiogenesis in breast tumor. Methods: miR-205 expression was assessed by quantitative real-time polymerase chain reaction (qRT-PCR); YAP1 expression by qRT-PCR, western blotting and immunohistochemistry; IL11 and IL15 expression by qRT-PCR, western blotting and ELISA. Tube formation and three-dimensioned sprouting assays in vitro, and orthotopic Xenografts in vivo were conducted as angiogenesis experiments. The mechanism of miR-205/YAP1-mediated tumor angiogenesis was analyzed via overexpression and shRNA, siRNA, or antibody neutralization experiments in combination with anti-VEGF antibody or Axitinib. Results: miR-205/YAP1 signaling axis activates breast normal fibroblasts (NFs) into CAFs, promotes tubule formation and sprouting of Human Umbilical Vein Endothelial Cells (HUVECs). Rescue of miR-205 in CAFs blunts angiogenesis processes. YAP1, a target of miR-205, does not regulate VEGF expression but specifically enhances IL11 and IL15 expressions, maintaining tumor angiogenesis even in the presence of Axitinib or after exhaustion of VEGF by neutralizing VEGF antibody. IL11 and IL15 released from CAFs activate STAT3 signaling in HUVECs. Blockage of IL11 and IL15 expression in CAFs results in the inactivation of STAT3-signaling in HUVECs and repression of the CAF-induced angiogenesis. The blunt angiogenesis halts the invasion and metastasis of breast cancer cells in vivo. Conclusions: These results provide a novel insight into breast CAF-induced tumor angiogenesis in a VEGF-independent manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Feminino , Fibroblastos/metabolismo , Humanos , MicroRNAs/genética , Neovascularização Patológica/metabolismo , Fosfoproteínas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Sinalização YAP
7.
Cell Death Dis ; 8(3): e2642, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252644

RESUMO

Drosha is an RNA III-like enzyme that has an aberrant expression in some tumors. Our previous studies showed the aberrant Drosha in gastric tumors. However, the roles of nuclear Drosha, the main regulator of microRNA (miRNA) biogenesis, in gastric cancer (GC) progression remain poorly understood. In this study, we demonstrated that nuclear Drosha is significantly associated with cell invasion of GC and that Drosha silence impedes the tumor invasion. Knockdown of Drosha led to a set of dysregulated miRNAs in GC cells. Multiple targets of these miRNAs were the members in cell migration, invasion and metastasis-associated signaling (e.g. ECM-receptor interaction, focal adhesion, p53 signaling and MAPK signaling pathway) revealed by bioinformatics analysis. LAMC2 (a key element of ECM-receptor signaling) and CD82 (a suppressor of p53 signaling) are the targets of miR-622 and miR-197, respectively. High levels of LAMC2 and low levels of CD82 were significantly related to the worse outcome for GC patients. Furthermore, overexpression of LAMC2 and knockdown of CD82 markedly promoted GC cell invasion and activated EGFR/ERK1/2-MMP7 signaling via upregulation of the expression of phosphorylated (p)-EGFR, p-ERK1/2 and MMP7. Our findings suggest that nuclear Drosha potentially has a role in the development of GC.


Assuntos
Receptores ErbB/metabolismo , Proteína Kangai-1/metabolismo , Laminina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Metaloproteinase 7 da Matriz/metabolismo , MicroRNAs/metabolismo , Ribonuclease III/metabolismo , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Neoplasias Gástricas/patologia , Regulação para Cima/fisiologia
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 32(9): 1207-11, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-27609577

RESUMO

Objective To establish a gastric cancer cell line with stable Drosha silenced and explore the effect of Drosha on the chemosensitivity of gastric cancer cells to epirubicin. Methods Interfering sequences targeting Drosha were designed and inserted into the lentiviral vectors, which were used to transfect MGC-803 cells. The level of Drosha mRNA was detected by quantitative real-time PCR; Drosha protein was detected by Western blotting; MTT assay was performed to test the 50% inhibitory concentration (IC50) of epirubicin agaisnt wide-type MGC-803 cells. After the treatment with IC50 epirubicin, the apoptosis rate of each cell group was determined by flow cytometry; the expressions of apoptosis-related proteins caspase-3, caspase-9, Bax, Bcl-2 were assessed by Western blotting. Results The gastric cancer MGC-803 cells with stable Drosha silenced were successfully established, and the levels of Drosha mRNA and protein were reduced. After the cells were treated with 0.5 mg/L(IC50) epirubicin, the apoptosis rate of MGC-803 cells was raised, the protein expressions of caspase-3 , caspase-9 and Bax were significantly upregulated and Bcl-2 was downregulated. Conclusion The silence of Drosha expression can promote the sensitivity of gastric cancer to epirubicin.


Assuntos
Antineoplásicos/farmacologia , Epirubicina/farmacologia , Ribonuclease III/genética , Neoplasias Gástricas/genética , Apoptose/efeitos dos fármacos , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/fisiopatologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
9.
Dig Dis Sci ; 61(4): 1080-90, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26694172

RESUMO

BACKGROUND: The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors. AIMS: The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression. METHODS: Drosha expression and its subcellular location was investigated by immunohistochemical staining of a set of tissue microarrays composed of normal adjacent tissues (374), chronic gastritis (137), precancerous lesions (94), and gastric adenocarcinoma (829) samples, and in gastric cancer cell lines with varying differentiation by immunofluorescence and western blot assay. RESULTS: Gradual loss of cytoplasmic Drosha was accompanied by tumor progression in both gastric cancer tissues and cell lines, and was inversely associated with tumor volume (P = 0.002), tumor grade (P < 0.001), tumor stage (P = 0.018), and distant metastasis (P = 0.026). Aberrant high levels of cytoplasmic Drosha were apparent in intestinal metaplasia and dysplasia tissues. The levels of nuclear Drosha were sharply decreased in chronic gastritis and maintained through precancerous lesions to gastric cancer. High levels of cytoplasmic Drosha predicted longer survival (LR = 7.088, P = 0.008) in gastric cancer patients. CONCLUSIONS: Our data provide novel insights into gastric cancer that cytoplasmic Drosha potentially plays a role in preventing carcinogenesis and tumor progression, and may be an independent predictor of patient outcome.


Assuntos
Carcinoma/metabolismo , Gastrite Atrófica/metabolismo , Lesões Pré-Cancerosas/metabolismo , Ribonuclease III/metabolismo , Neoplasias Gástricas/metabolismo , Carcinoma/mortalidade , Carcinoma/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , China/epidemiologia , Citoplasma/metabolismo , Progressão da Doença , Feminino , Mucosa Gástrica/metabolismo , Humanos , Masculino , Metaplasia/metabolismo , Pessoa de Meia-Idade , Prognóstico , Estômago/patologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise Serial de Tecidos
10.
Int J Biochem Cell Biol ; 71: 62-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26693891

RESUMO

Twist, a highly conserved basic Helix-Loop-Helix transcription factor, functions as a major regulator of epithelial-mesenchymal transition (EMT) and tumor metastasis. In different cell models, signaling pathways such as TGF-ß, MAPK/ERK, WNT, AKT, JAK/STAT, Notch, and P53 have also been shown to play key roles in the EMT process, yet little is known about the signaling pathways regulated by Twist in tumor cells. Using iTRAQ-labeling combined with 2D LC-MS/MS analysis, we identified 194 proteins with significant changes of expression in MCF10A-Twist cells. These proteins reportedly play roles in EMT, cell junction organization, cell adhesion, and cell migration and invasion. ECM-receptor interaction, MAPK, PI3K/AKT, P53 and WNT signaling were found to be aberrantly activated in MCF10A-Twist cells. Ingenuity Pathways Analysis showed that integrin ß1 (ITGB1) acts as a core regulator in linking integrin-linked kinase (ILK), Focal-adhesion kinase (FAK), MAPK/ERK, PI3K/AKT, and WNT signaling. Increased Twist and ITGB1 are associated with breast tumor progression. Twist transcriptionally regulates ITGB1 expression. Over-expression of ITGB1 or Twist in MCF10A led to EMT, activation of FAK/ILK, MAPK/ERK, PI3K/AKT, and WNT signaling. Knockdown of Twist or ITGB1 in BT549 and Hs578T cells decreased activity of FAK, ILK, and their downstream signaling, thus specifically impeding EMT and cell invasion. Knocking down ILK or inhibiting FAK, MAPK/ERK, or PI3K/AKT signaling also suppressed Twist-driven EMT and cell invasion. Thus, the Twist-ITGB1-FAK/ILK pathway and their downstream signaling network dictate the Twist-induced EMT process in human mammary epithelial cells and breast cancer cells.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrina beta1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína 1 Relacionada a Twist/metabolismo , Linhagem Celular Tumoral , Humanos , Glândulas Mamárias Humanas/citologia , Invasividade Neoplásica , Prognóstico
11.
Stem Cells ; 34(1): 55-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26418365

RESUMO

Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with self-renewal capacity and limitless proliferative potential as well as high invasion and migration capacity. These cells are commonly associated with epithelial-mesenchymal transition (EMT), which is also critical for tumor metastasis. Recent studies illustrate a direct link between EMT and stemness of cancer cells. Long non-coding RNAs (lncRNAs) have emerged as important new players in the regulation of multiple cellular processes in various diseases. To date, the role of lncRNAs in EMT-associated CSC stemness acquisition and maintenance remains unclear. In this study, we discovered that a set of lncRNAs were dysregulated in Twist-positive mammosphere cells using lncRNA microarray analysis. Multiple lncRNAs-associated canonical signaling pathways were identified via bioinformatics analysis. Especially, the Shh-GLI1 pathway associated lncRNA-Hh, transcriptionally regulated by Twist, directly targets GAS1 to stimulate the activation of hedgehog signaling (Hh). The activated Hh increases GLI1 expression, and enhances the expression of SOX2 and OCT4 to play a regulatory role in CSC maintenance. Thus, the mammosphere-formation efficiency (MFE) and the self-renewal capacity in vitro, and oncogenicity in vivo in Twist-positive breast cancer cells are elevated. lncRNA-Hh silence in Twist-positive breast cells attenuates the activated Shh-GLI1 signaling and decreases the CSC-associated SOX and OCT4 levels, thus reduces the MFE and tumorigenesis of transplanted tumor. Our results reveal that lncRNAs function as an important regulator endowing Twist-induced EMT cells to gain the CSC-like stemness properties.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Hedgehog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Proteína 1 Relacionada a Twist/metabolismo , Animais , Neoplasias da Mama/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/genética , Esferoides Celulares/patologia
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 31(11): 1519-22, 1527, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26522361

RESUMO

OBJECTIVE: To investigate the role of Drosha expression in the progression of gastric adenocarcinoma and its impact on the invasive ability of SGC-7901 human gastric cancer cells. METHODS: Drosha expression was detected in 889 gastric carcinoma samples on tissue microarrays by immunohistochemistry staining and quantified by Image-Pro Plus software. Statistical analysis was used to evaluate the correlations between Drosha expression and the clinicopathological characteristics of the 889 tumor cases or the outcomes of 309 gastric adenocarcinoma patients. Drosha was knocked down in SGC-7901 cells by small interfering RNA (siRNA), and cell invasive ability was assessed by Transwell(TM) assay. RESULTS: Drosha expression was the highest in the well differentiated gastric adenocarcinoma (median absorbance, 0.4195), and the lowest in the poorly differentiated samples. Drosha expression was significantly related to Laren classification, tumor size, tumor invasion depth, lymph node metastasis, tumor pathological grade and stage. Patients in Drosha positive group had a higher survival rate than those in Drosha negative group. Silencing Drosha in SGC-7901 cells resulted in an enhanced cell invasion. CONCLUSION: Drosha expression was reduced gradually with the degrading histological differentiation of gastric adenocarcinoma, and the knock-down of Drosha expression could promote gastric adenocarcinoma cell invasion.


Assuntos
Adenocarcinoma/patologia , Ribonuclease III/fisiologia , Neoplasias Gástricas/patologia , Adenocarcinoma/química , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Ribonuclease III/análise , Neoplasias Gástricas/química
13.
Oncotarget ; 6(28): 25755-69, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26342198

RESUMO

Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated ß1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the ß1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the ß1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR.


Assuntos
Neoplasias da Mama/enzimologia , Metabolismo Energético , Glucose/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Transição Epitelial-Mesenquimal , Feminino , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina beta1/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Proteínas Nucleares/genética , Fenótipo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína 1 Relacionada a Twist/genética
14.
Cell Cycle ; 14(12): 1908-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970706

RESUMO

Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the ß-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21(Cip1) level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Via de Sinalização Wnt , Antioxidantes/química , Linhagem Celular Tumoral , Proliferação de Células , Quebras de DNA de Cadeia Dupla , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Homeostase , Humanos , MAP Quinase Quinase 1/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Oxigênio/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , beta Catenina/metabolismo
15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 30(10): 1071-5, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25270211

RESUMO

OBJECTIVE: To investigate the difference of miRNA expression levels of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) in human breast cancer microenvironment and its effect on the biological features of CAFs. METHODS: Collagenase-1 was used to digest the cancer and adjacent tissues to isolate CAFs and NFs. The isolated cells were cultured and characterized in purity and biological features. The expression of fibroblast secretory protein (FSP) in CAFs and NFs was detected by immunofluorescence staining and Western blotting. Transwell(TM) assay was adopted to compare the invasion ability of CAFs and NFs. The different expressions of miRNAs in CAFs versus NFs were detected by miRNA microarray and analyzed by Significance Analysis of Microarrays (SAM). The differences in miR-205 and miR-221 expressions were verified by real-time quantitative PCR (qRT-PCR). The common target genes of the miRNAs were predicted using multi-bioinformatics tools. The pathway analysis was conducted through the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7. The secreting products of TGF-ß or IL-6 signaling pathway, matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 were analyzed by ELISA. RESULTS: The primary CAFs and NFs were isolated from breast cancer patients with a purity of over 95%. Compared with NFs, the expression of FSP was obviously elevated in CAFs, and the invasion ability of CAFs was enhanced. The miRNA microarray results showed that there were 10 miRNA genes dysregulated in CAFs, including 3 up-regulated (miR-221-5p, miR-31-3p, miR-221-3p) and 7 down-regulated genes (miR-205, miR-200b , miR-200c, miR-141, miR-101, miR-342-3p, let-7g). The common targets genes of the dysregulated miRNAs were mainly focused on HGF, chemokine signaling, insulin signaling, MAPK signaling, tight junction signaling, adherence junction signaling, EGF1 signaling, androgen-receptor signaling, Wnt and IL-7 signaling. In addition, dysregulated miR-200b/c and miR-141 et al. affect TGF-ß and IL-6 signaling through inhibiting their target genes in CAFs, thus promoting invasion and migration of CAFs. CONCLUSION: The miRNA expression profile was markedly dysregulated in CAFs. Those dysregulated miRNAs may take part in the transformation from NFs to CAFs, and also have a close relationship with adhesion, migration, proliferation, secretion and cell-cell interaction of CAFs.


Assuntos
Neoplasias da Mama/genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Fibroblastos/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
PLoS One ; 9(5): e97460, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24865991

RESUMO

OBJECTIVES: MicroRNA-21 in serum is a promising marker for the diagnosis of lung carcinoma. A meta-analysis was performed to assess the diagnostic accuracy and clinical value of serum microRNA-21 in patients with lung carcinoma. METHODS: PubMed, EMBASE, Web of Knowledge (ISI), the Cochrane Library, Scopus, BioMed Central, Science Direct, China National Knowledge Infrastructure (CNKI), Wan Fang data and Technology of Chongqing (VIP) databases were searched to identify studies in English and Chinese that assessed the diagnostic value of serum miR-21 for lung carcinoma, from inception to 9 April 2014. Two independent investigators identified and extracted the study characteristics from all articles according to defined inclusion and exclusion criteria. Quality assessment of diagnostic accuracy studies (QUADAS) was used to score the quality of the eligible studies. Stata12 and Meta-DiSc software were used to test the heterogeneity and to perform the meta-analysis. RESULTS: Our search returned 1008 articles, of which seven fulfilled the inclusion criteria, accounting for 500 patients and 386 controls. Using random-effect model analysis, the summary assessments revealed that the mean sensitivity was 0.71% (95%CI: 57-82%) and specificity was 0.84% (95%CI: 76-89%). The area under the receiver operating characteristic curve was 0.86 (95%CI: 0.83-0.89). In addition, heterogeneity was clearly apparent but was not caused by the threshold effect, as shown by Meta-DiSc analysis. CONCLUSION: The current evidence suggests that serum miR-21 can be rapidly measured in lung carcinoma patients and has potential diagnostic value with moderate sensitivity and specificity. Further prospective studies to assess the early stage diagnostic value are needed in the future.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Humanos , Neoplasias Pulmonares/sangue , MicroRNAs/sangue , Prognóstico , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA