Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Oncol ; 16(5): 1965-1994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764819

RESUMO

BACKGROUND: Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM: To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS: Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS: Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION: YGS has the effect of anti-gastric cancer and immune regulation.

2.
World J Gastrointest Oncol ; 16(1): 30-50, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38292852

RESUMO

BACKGROUND: Pachymic acid (PA) is derived from Poria cocos. PA has a variety of pharmacological and inhibitory effects on various tumors. However, the mechanism of action of PA in gastric cancer (GC) remains unclear. AIM: To investigate the mechanism of PA in treating GC via the combination of network pharmacology and experimental verification. METHODS: The GeneCards and OMIM databases were used to derive the GC targets, while the Pharm Mapper database provided the PA targets. Utilizing the STRING database, a protein-protein interaction network was constructed and core targets were screened. The analyses of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis were conducted, and molecular docking and clinical correlation analyses were performed on the core targets. Ultimately, the network pharmacology findings were validated through in vitro cell assays, encompassing assessments of cell viability, apoptosis, cell cycle, cloning, and western blot analysis. RESULTS: According to network pharmacology analysis, the core targets were screened, and the PI3K/AKT signaling pathway is likely to be the mechanism by which PA effectively treats GC, according to KEGG enrichment analysis. The experimental findings showed that PA could control PI3K/AKT signaling to prevent GC cell proliferation, induce apoptosis, and pause the cell cycle. CONCLUSION: Network pharmacology demonstrated that PA could treat GC by controlling a variety of signaling pathways and acting on a variety of targets. This has also been supported by in vitro cell studies, which serve as benchmarks for further research.

3.
World J Gastrointest Oncol ; 15(11): 1835-1851, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077642

RESUMO

Cancer seriously endangers human health. Gastrointestinal cancer is the most common and major malignant tumor, and its morbidity and mortality are gradually increasing. Although there are effective treatments such as radiotherapy and chemotherapy for gastrointestinal tumors, they are often accompanied by serious side effects. According to the traditional Chinese medicine and food homology theory, many materials are both food and medicine. Moreover, food is just as capable of preventing and treating diseases as medicine. Medicine and food homologous herbs not only have excellent pharmacological effects and activities but also have few side effects. As a typical medicinal herb with both medicinal and edible uses, some components of ginger have been shown to have good efficacy and safety against cancer. A mass of evidence has also shown that ginger has anti-tumor effects on digestive tract cancers (such as gastric cancer, colorectal cancer, liver cancer, laryngeal cancer, and pancreatic cancer) through a variety of pathways. The aim of this study is to investigate the mechanisms of action of the main components of ginger and their potential clinical applications in treating gastrointestinal tumors.

4.
Medicine (Baltimore) ; 102(34): e34722, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653798

RESUMO

Gastric cancer (GC) is the most aggressive malignant tumor of the digestive tract. However, there is still a lack of effective treatment methods in clinical practice. Studies have shown that dehydroandrographolide (DA) has been shown to have anti-cancer activity in a variety of cancers, but it has not been reported in GC. Firstly, we obtained data on DA target genes, GC-related genes, and differentially expressed genes (DEGs) from the PharmMapper, GeneCards, and GEO databases, respectively. Then, the STRING database was used to construct the protein-protein interaction network of intersection genes, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of intersection genes were performed. Finally, 8 hub target genes were identified by analyzing their expression and prognostic survival, and molecular docking between the hub genes and DA was performed. In this study, 293 DA drug target genes, 11,366 GC-related genes, and 3184 DEGs were identified. Gene Ontology and KEGG analysis showed that the intersection genes of DA targets and GC-related genes were mainly related to cancer pathways involving apoptosis and cell adhesion. The intersection genes of DEGs, DA targets, and GC-related genes were also mainly related to cancer pathways involving chemical carcinogenesis, and drug metabolism. The molecular docking results showed that the 8 hub target genes had an apparent affinity for DA, which could be used as potential targets for DA treatment of GC. The results of this study show that the molecular mechanism by which DA inhibits GC metastasis involves multiple target genes. It may play an essential role in inhibiting the invasion and metastasis of GC by regulating the expression and polymorphism of hub target genes, such as MMP9, MMP12, CTSB, ESRRG, GSTA1, ADHIC, CA2, and AKR1C2.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Farmacologia em Rede , Simulação de Acoplamento Molecular , Biologia Computacional
5.
World J Gastroenterol ; 29(29): 4542-4556, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37621755

RESUMO

BACKGROUND: Gastric carcinoma (GC) is the third most frequent cause of cancer-related death, highlighting the pressing need for novel clinical treatment options. In this regard, microRNAs (miRNAs) have emerged as a promising therapeutic strategy. Studies have shown that miRNAs can regulate related signaling pathways, acting as tumor suppressors or tumor promoters. AIM: To explore the effect of miR-204-3p on GC cells. METHODS: We measured the expression levels of miR-204-3p in GC cells using quantitative real-time polymerase chain reaction, followed by the delivery of miR-204-3p overexpression and miR-204-3p knockdown vectors into GC cells. CCK-8 was used to detect the effect of miR-204-3p on the proliferation of GC cells, and the colony formation ability of GC cells was detected by the clonal formation assay. The effects of miR-204-3p on GC cell cycle and apoptosis were detected by flow cytometry. The BABL/c nude mouse subcutaneous tumor model using MKN-45 cells was constructed to verify the effect of miR-204-3p on the tumorigenicity of GC cells. Furthermore, the study investigated the effects of miR-204-3p on various proteins related to the MAPK signaling pathway, necroptosis signaling pathway and apoptosis signaling pathway on GC cells using Western blot techniques. RESULTS: Firstly, we found that the expression of miR-204-3p in GC was low. When treated with the lentivirus overexpression vector, miR-204-3p expression significantly increased, but the lentivirus knockout vector had no significant effect on miR-204-3p. In vitro experiments confirmed that miR-204-3p overexpression inhibited GC cell viability, promoted cell apoptosis, blocked the cell cycle, and inhibited colony formation ability. In vivo animal experiments confirmed that miR-204-3p overexpression inhibited subcutaneous tumorigenesis ability in BABL/c nude mice. Simultaneously, our results verified that miR-204-3p overexpression can inhibit GC cell proliferation by inhibiting protein expression levels of KRAS and p-ERK1/2 in the MAPK pathway, as well as inhibiting protein expression levels of p-RIP1 and p-MLK1 in the necroptosis pathway to promote the BCL-2/BAX/Caspase-3 apoptosis pathway. CONCLUSION: MiR-204-3p overexpression inhibited GC cell proliferation by inhibiting the MAPK pathway and necroptosis pathway to promote apoptosis of GC cells. Thus, miR-204-3p may represent a new potential therapeutic target for GC.


Assuntos
MicroRNAs , Necroptose , Transdução de Sinais , Neoplasias Gástricas , Animais , Camundongos , Apoptose , Carcinoma/patologia , Divisão Celular , Modelos Animais de Doenças , Camundongos Nus , MicroRNAs/genética , Neoplasias Gástricas/patologia
6.
World J Gastroenterol ; 29(27): 4317-4333, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37545635

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common cancer types worldwide, and its prevention and treatment methods have garnered much attention. As the active ingredient of licorice, 18ß-glycyrrhetinic acid (18ß-GRA) has a variety of pharmacological effects. The aim of this study was to explore the effective target of 18ß-GRA in the treatment of GC, in order to provide effective ideas for the clinical prevention and treatment of GC. AIM: To investigate the mechanism of 18ß-GRA in inhibiting cell proliferation and promoting autophagy flux in GC cells. METHODS: Whole transcriptomic analyses were used to analyze and screen differentially expressed microRNAs (miRNAs) in GC cells after 18ß-GRA intervention. Lentivirus-transfected GC cells and the Cell Counting Kit-8 were used to detect cell proliferation ability, cell colony formation ability was detected by the clone formation assay, and flow cytometry was used to detect the cell cycle and apoptosis. A nude mouse transplantation tumor model of GC cells was constructed to verify the effect of miR-328-3p overexpression on the tumorigenicity of GC cells. Tumor tissue morphology was observed by hematoxylin and eosin staining, and microtubule-associated protein light chain 3 (LC3) expression was detected by immunohistochemistry. TransmiR, STRING, and miRWalk databases were used to predict the relationship between miR-328-3p and signal transducer and activator of transcription 3 (STAT3)-related information. Expression of STAT3 mRNA and miR-328-3p was detected by quantitative polymerase chain reaction (qPCR) and the expression levels of STAT3, phosphorylated STAT3 (p-STAT3), and LC3 were detected by western blot analysis. The targeted relationship between miR-328-3p and STAT3 was detected using the dual-luciferase reporter gene system. AGS cells were infected with monomeric red fluorescent protein-green fluorescent protein-LC3 adenovirus double label. LC3 was labeled and autophagy flow was observed under a confocal laser microscope. RESULTS: The expression of miR-328-3p was significantly upregulated after 18ß-GRA intervention in AGS cells (P = 4.51E-06). Overexpression of miR-328-3p inhibited GC cell proliferation and colony formation ability, arrested the cell cycle in the G0/G1 phase, promoted cell apoptosis, and inhibited the growth of subcutaneous tumors in BALB/c nude mice (P < 0.01). No obvious necrosis was observed in the tumor tissue in the negative control group (no drug intervention or lentivirus transfection) and vector group (the blank vector for lentivirus transfection), and more cells were loose and necrotic in the miR-328-3p group. Bioinformatics tools predicted that miR-328-3p has a targeting relationship with STAT3, and STAT3 was closely related to autophagy markers such as p62. After overexpressing miR-328-3p, the expression level of STAT3 mRNA was significantly decreased (P < 0.01) and p-STAT3 was downregulated (P < 0.05). The dual-luciferase reporter gene assay showed that the luciferase activity of miR-328-3p and STAT3 3' untranslated regions of the wild-type reporter vector group was significantly decreased (P < 0.001). Overexpressed miR-328-3p combined with bafilomycin A1 (Baf A1) was used to detect the expression of LC3 II. Compared with the vector group, the expression level of LC3 II in the overexpressed miR-328-3p group was downregulated (P < 0.05), and compared with the Baf A1 group, the expression level of LC3 II in the overexpressed miR-328-3p + Baf A1 group was upregulated (P < 0.01). The expression of LC3 II was detected after intervention of 18ß-GRA in GC cells, and the results were consistent with the results of miR-328-3p overexpression (P < 0.05). Additional studies showed that 18ß-GRA promoted autophagy flow by promoting autophagosome synthesis (P < 0.001). qPCR showed that the expression of STAT3 mRNA was downregulated after drug intervention (P < 0.05). Western blot analysis showed that the expression levels of STAT3 and p-STAT3 were significantly downregulated after drug intervention (P < 0.05). CONCLUSION: 18ß-GRA promotes the synthesis of autophagosomes and inhibits GC cell proliferation by regulating the miR-328-3p/STAT3 signaling pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Autofagia , RNA Mensageiro , Apoptose , Regulação Neoplásica da Expressão Gênica
7.
World J Gastroenterol ; 29(23): 3622-3644, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37398884

RESUMO

BACKGROUND: Gastric cancer (GC) is a common gastrointestinal malignancy worldwide. Based on cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets. AIM: To explore the molecular mechanism of 18ß-glycyrrhetinic acid (18ß-GRA) regulating the miR-345-5p/TGM2 signaling pathway to inhibit the proliferation of GC cells. METHODS: CCK-8 assay was used to determine the effect of 18ß-GRA on the survival rate of GES-1 cells and AGS and HGC-27 cells. Cell cycle and apoptosis were detected by flow cytometry, cell migration was detected by a wound healing assay, the effect of 18ß-GRA on subcutaneous tumor growth in BALB/c nude mice was investigated, and the cell autophagy level was determined by MDC staining. TMT proteomic analysis was used to detect the differentially expressed autophagy-related proteins in GC cells after 18ß-GRA intervention, and then the protein-protein interaction was predicted using STRING (https://string-db.org/). MicroRNAs (miRNAs) transcriptome analysis was used to detect the miRNA differential expression profile, and use miRBase (https://www.mirbase/) and TargetScan (https://www.targetscan.org/) to predict the miRNA and complementary binding sites. Quantitative real-time polymerase chain reaction was used to detect the expression level of miRNA in 18ß-GRA treated cells, and western blot was used to detect the expression of autophagy related proteins. Finally, the effect of miR-345-5p on GC cells was verified by mir-345-5p overexpression. RESULTS: 18ß-GRA could inhibit GC cells viability, promote cell apoptosis, block cell cycle, reduce cell wound healing ability, and inhibit the GC cells growth in vivo. MDC staining results showed that 18ß-GRA could promote autophagy in GC cells. By TMT proteomic analysis and miRNAs transcriptome analysis, it was concluded that 18ß-GRA could down-regulate TGM2 expression and up-regulate miR-345-5p expression in GC cells. Subsequently, we verified that TGM2 is the target of miR-345-5p, and that overexpression of miR-345-5p significantly inhibited the protein expression level of TGM2. Western blot showed that the expression of autophagy-related proteins of TGM2 and p62 was significantly reduced, and LC3II, ULK1 and AMPK expression was significantly increased in GC cells treated with 18ß-GRA. Overexpression of miR-345-5p not only inhibited the expression of TGM2, but also inhibited the proliferation of GC cells by promoting cell apoptosis and arresting cell cycle. CONCLUSION: 18ß-GRA inhibits the proliferation of GC cells and promotes autophagy by regulating the miR-345-5p/TGM2 signaling pathway.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Camundongos Nus , Proteômica , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Transdução de Sinais , Divisão Celular , Proteínas Relacionadas à Autofagia/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética
8.
World J Gastroenterol ; 28(22): 2437-2456, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35979263

RESUMO

BACKGROUND: Gastric carcinoma (GC) is a common gastrointestinal malignancy worldwide. Based on the cancer-related mortality, the current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find effective drug treatment targets. AIM: To explore the mechanism by which 18ß-glycyrrhetinic acid (18ß-GRA) regulates mitochondrial ribosomal protein L35 (MRPL35) related signal proteins to inhibit the proliferation of GC cells. METHODS: Cell counting kit-8 assay was used to detect the effects of 18ß-GRA on the survival rate of human normal gastric mucosal cell line GES-1 and the proliferation of GC cell lines MGC80-3 and BGC-823. The apoptosis and cell cycle were assessed by flow cytometry. Cell invasion and migration were evaluated by Transwell assay, and cell scratch test was used to detect cell migration. Furthermore, a tumor model was established by hypodermic injection of 2.5 × 106 BGC-823 cells at the selected positions of BALB/c nude mice to determine the effect of 18ß-GRA on GC cell proliferation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect MRPL35 expression in the engrafted tumors in mice. We used the term tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry to screen for differentially expressed proteins (DEPs) extracted from GC cells and control cells after 18ß-GRA intervention. A detailed bioinformatics analysis of these DEPs was performed, including Gene Ontology annotation and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and so on. Moreover, STRING database (https://string-db.org/) was used to predict protein-protein interaction (PPI) relationships and Western blot was used to detect the expression of proteins of interest in GC cells. RESULTS: The results indicated that 18ß-GRA could inhibit the proliferation of GC cells in a dose- and time-dependent manner. It could induce GC cell apoptosis and arrest the cell cycle at G0/G1 phase. The proportion of cells arrested at S phase decreased with the increase of 18-GRA dose, and the migration and invasiveness of GC cells were inhibited. The results of animal experiments showed that 18ß-GRA could inhibit tumor formation in BALB/c nude mice, and qRT-PCR results showed that MRPL35 expression level was significantly reduced in the engrafted tumors in mice. Using TMT technology, 609 DEPs, among which 335 were up-regulated and 274 were down-regulated, were identified in 18ß-GRA intervention compared with control. We found that the intervention of 18ß-GRA in GC cells involved many important biological processes and signaling pathways, such as cellular processes, biological regulation, and TP53 signaling pathway. Notably, after the drug intervention, MRPL35 expression was significantly down-regulated (P = 0.000247), TP53 expression was up-regulated (P = 0.02676), and BCL2L1 was down-regulated (P = 0.01699). Combined with the Retrieval of Interacting Genes/Proteins database, we analyzed the relationship between MRPL35, TP53, and BCL2L1 signaling proteins, and we found that COPS5, BAX, and BAD proteins can form a PPI network with MRPL35, TP53, and BCL2L1. Western blot analysis confirmed the intervention effect of 18ß-GRA on GC cells, MRPL35, TP53, and BCL2L1 showed dose-dependent up/down-regulation, and the expression of COPS5, BAX, and BAD also increased/decreased with the change of 18ß-GRA concentration. CONCLUSION: 18ß-GRA can inhibit the proliferation of GC cells by regulating MRPL35, COPS5, TP53, BCL2L1, BAX, and BAD.


Assuntos
Carcinoma , Neoplasias Gástricas , Animais , Apoptose , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ácido Glicirretínico/análogos & derivados , Humanos , Camundongos , Camundongos Nus , Compostos de Fenilureia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/farmacologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA