Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 105(3): 308-312, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38018368

RESUMO

Familial hypercholesterolemia (FH) is defined as a monogenic disease, characterized by elevated low-density lipoprotein cholesterol (LDL-C) levels. FH remains underdiagnosed and undertreated in Chinese. We whole-genome sequenced 6820 newborns from Qingdao of China to investigate the FH-related gene (LDLR, APOB, PCSK9) mutation types, carrier ratio and genotype-phenotype correlation. In this study, the prevalence of FH in Qingdao of China was 0.47% (95% CI: 0.32%-0.66%). The plasma lipid levels of FH-related gene mutation carriers begin to increase as early as infant. T-CHO and LDL-C of FH infants was higher by 48.1% (p < 0.001) and 42.9% (p < 0.001) relative to non-FH infants. A total of 22 FH infants and their parent participate in further studies. The results indicated that FH infant parent noncarriers have the normal plasma lipid level, while T-CHO and LDL-C increased in FH infants and FH infant parent carriers, but no difference between the groups. This highlights the importance of genetic factors. In conclusion, the spectrum of FH-causing mutations in the newborns of Qingdao, China was described for the first time. These data can serve as a considerable dataset for next-generation sequencing analysis of the Chinese population with FH and potentially helping reform regional policies for early detection and prevention of FH.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Recém-Nascido , Pró-Proteína Convertase 9/genética , LDL-Colesterol/genética , Receptores de LDL/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Mutação
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1227-1233, 2023 Dec 15.
Artigo em Chinês | MEDLINE | ID: mdl-38112139

RESUMO

OBJECTIVES: To explore the role and potential mechanisms of chitinase-3-like protein 1 (CHI3L1) in coronary artery lesions in a mouse model of Kawasaki disease (KD)-like vasculitis. METHODS: Four-week-old male SPF-grade C57BL/6 mice were randomly divided into a control group and a model group, with 10 mice in each group. The model group mice were intraperitoneally injected with 0.5 mL of lactobacillus casei cell wall extract (LCWE) to establish a mouse model of KD-like vasculitis, while the control group mice were injected with an equal volume of normal saline. The general conditions of the mice were observed on the 3rd, 7th, and 14th day after injection. Changes in coronary artery tissue pathology were observed using hematoxylin-eosin staining. The level of CHI3L1 in mouse serum was measured by enzyme-linked immunosorbent assay. Immunofluorescence staining was used to detect the expression and localization of CHI3L1, von Willebrand factor (vWF), and α-smooth muscle actin (α-SMA) in coronary artery tissue. Western blot analysis was used to detect the expression of CHI3L1, vWF, vascular endothelial cadherin (VE cadherin), Caspase-3, B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), nuclear factor κB (NF-κB), and phosphorylated NF-κB (p-NF-κB) in coronary artery tissue. RESULTS: The serum level of CHI3L1 in the model group was significantly higher than that in the control group (P<0.05). Compared to the control group, the expression of CHI3L1 in the coronary artery tissue was higher, while the expression of vWF was lower in the model group. The relative expression levels of CHI3L1, Bax, Caspase-3, NF-κB, and p-NF-κB were significantly higher in the model group than in the control group (P<0.05). The relative expression levels of vWF, VE cadherin, and Bcl-2 were lower in the model group than in the control group (P<0.05). CONCLUSIONS: In the LCWE-induced mouse model of KD-like vasculitis, the expression levels of CHI3L1 in serum and coronary arteries increase, and it may play a role in coronary artery lesions through endothelial cell apoptosis mediated by inflammatory reactions.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Masculino , Animais , Camundongos , Síndrome de Linfonodos Mucocutâneos/patologia , Vasos Coronários/patologia , NF-kappa B , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína 1 Semelhante à Quitinase-3 , Fator de von Willebrand/metabolismo , Camundongos Endogâmicos C57BL , Caderinas
3.
Front Pediatr ; 9: 639687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164355

RESUMO

Sengers syndrome (OMIM #212350) is a rare autosomal recessive disorder due to mutations in acylglycerol kinase (AGK) gene. We report two cases that were diagnosed clinically and confirmed genetically. Both infants had typical clinical features characterized by hypertrophic cardiomyopathy, bilateral cataracts, myopathy, and lactic acidosis, and heart failure was the most severe manifestation. Genetic testing of a boy revealed a homozygous pathogenic variant for Sengers syndrome in AGK (c.1131+2T>C) which was classified as likely pathogenic according to the ACMG guideline; besides, his skeletal muscle biopsy and transmission electron microscope presented obvious abnormity. One girl had compound heterozygous (c.409C>T and c.390G>A) variants of AGK gene that was identified in the proband and further Sanger sequencing indicated that the parents carried a single heterozygous mutation each. After the administration of "cocktail" therapy including coenzyme Q10, carnitine, and vitamin B complex, as well as ACEI, heart failure and myopathy of the boy were significantly improved and the condition was stable after 1-year follow-up, while the cardiomyopathy of the girl is not progressive but the plasma lactate acid increased significantly. We present the first report of two infants with Sengers syndrome diagnosed via exome sequencing in China.

4.
J Obstet Gynaecol Res ; 47(7): 2394-2405, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33949053

RESUMO

AIM: Endometriosis is a common gynecological disorder characterized by chronic pelvic pain and infertility, which negatively affects women's health worldwide. AFAP1-AS1 has been implicated in endometriosis lesions recently, but its mechanism of endometriosis progression remains unclear. METHODS: Endometrial stromal cells (ESCs) were used to identify the role of AFAP1-AS1 in endometriosis. The migratory capability was determined by transwell. Gene and protein expressions were identified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability and apoptosis were detected by MTT assays and flow cytometry, respectively. Luciferase report assays were used to identify the interaction of AFAP1-AS1, miR-424-5p and signal transducer and activator of transcription 3 (STAT3). RESULTS: AFAP1-AS1 knockdown or miR-424-5p overexpression inhibited proliferation and migration, and promoted apoptosis in ESCs. In addition, knockdown of AFAP1-AS1 repressed the expression of ki-67 and Bcl-2, and promoted the levels of cleaved caspase-3 and Bax. Furthermore, knockdown of AFAP1-AS1 inhibited the conversion of E-cadherin to N-cadherin and the expression of Snail. Moreover, AFAP1-AS1 activated the STAT3/transforming growth factor-ß1 (TGF-ß1)/Smad2 axis via directly targeting miR-424-5p. The regulatory effect of AFAP1-AS1 silencing in ESC migration, proliferation, and apoptosis was reversed by miR-424-5p inhibition or STAT3 overexpression. CONCLUSIONS: AFAP1-AS1 silencing could inhibit cell proliferation and promote apoptosis by regulating STAT3/TGF-ß/Smad signaling pathway via targeting miR-424-5p in ESCs. AFAP1-AS1 may be a potential therapeutic target of controlling the progression of endometriosis.


Assuntos
Endometriose , MicroRNAs , RNA Longo não Codificante , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Crescimento Transformador beta
5.
Front Mol Neurosci ; 13: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431596

RESUMO

Neuropathic pain (NP) is caused by primary or secondary impairment of the peripheral or central nervous systems. Its etiology is complex and involves abnormal patterns of gene expression and pathway activation. Using bioinformatics analysis, we aimed to identify NP-associated changes in genes and pathways in L4 and L5 dorsal root ganglia (DRG) in a rat model of NP induced by chronic compression of the DRG (CCD). Genome-wide transcriptional analyses were used to elucidate the molecular mechanisms underlying NP. We screened differentially expressed genes (DEGs) 7 days after CCD in comparison with sham-operated controls. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting were used to confirm the presence of key DEGs. Kyoto Encyclopedia of Genes and Genomes (KEGG)-pathway analysis of DEGs and global signal transduction network analysis of DEGs were also conducted. The CCD group developed clear mechanical and thermal allodynia in the ipsilateral hind paw compared with the sham group. This comparison identified 1,887 DEGs, with 1156 upregulated and 731 downregulated DEGs, and 123 DEG-enriched pathways. We identified the key candidate genes that might play a role in the development of NP, namely syndecan 1 (Sdc1), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma (Pi3k), Janus kinase 2 (Jak2), jun proto-oncogene, AP-1 transcription factor subunit (Jun), and interleukin 6 (IL-6) by analyzing the global signal transduction network. RT-qPCR and western blot analysis confirmed the microarray results. The DEGs Sdc1, Pi3k, Jak2, Jun, and IL-6, and the cytokine signaling pathway, the neuroactive ligand-receptor interaction, the toll-like receptor signaling pathway, and the PI3K-Akt signaling pathway may have decisive modulatory roles in both nerve regeneration and NP. These results provide deeper insight into the mechanism underlying NP and promising therapeutic targets for its treatment.

6.
Int J Oncol ; 52(5): 1415-1426, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29568956

RESUMO

Bromodomain containing 4 (BRD4), a member of the bromodomain and extra-terminal family, has become a promising drug target for numerous types of cancer. BRD4 has been reported to be deregulated in gliomas; however, the precise molecular pathways regulated by BRD4 remained elusive. In the present study, BRD4 expression was silenced in the glioma cell line U251 and the results demonstrated that BRD4 knockdown attenuated cell proliferation and promoted cell apoptosis. A genome-wide analysis of BRD4-regulated transcripts in U251 cells was performed using microarray to reveal the possible molecular mechanism. A total of 3,529 differentially expressed genes were identified; 1,648 of these genes were upregulated and 1,881 were downregulated. The results of the gene ontology analysis revealed that these genes were mainly involved in membrane organization, mitotic cell cycle, cell division and DNA replication. Pathway analysis revealed that the pathways altered following BRD4 knockdown included multiple cellular processes, such as cell cycle and apoptosis. Candidate genes were identified through global signal transduction network analysis and were validated using reverse transcription-quantitative polymerase chain reaction and western blot analyses. The results demonstrated that BRD4 knockdown decreased the expression of KRAS proto-oncogene GTPase (KRAS). Downregulated KRAS expression in U251 cells restrained cell proliferation and promoted cell apoptosis, suggesting that the effect of BRD4 on glioma cells might occur through the Ras pathway. In conclusion, the present results confirmed the role of BRD4 in glioma and provided information for further exploration of the molecular mechanism of BRD4 in glioma development and progression.

7.
Biochem Biophys Res Commun ; 479(1): 109-15, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27634219

RESUMO

Therapeutic management of diabetic myocardial fibrosis remains an unsolved clinical problem. Pin1, a peptidyl-prolyl isomerase, impacts diverse cellular processes and plays a pivotal role in regulating cardiac pathophysiology. Here we investigate the potential mechanism of action of Pin1 and its role in diabetes-induced myocardial fibrosis and dysfunction in mice. Cardiac Pin1, transforming growth factor ß1 (TGF-ß1), α-smooth muscle actin (α-SMA) and extracellular matrix deposits (collagen I and III) are found to be increased in diabetic mice, which are effectively prevented by Pin1 inhibition by juglone. Pin1 inhibition alleviates cardiac fibrosis and dysfunction. In vitro, high glucose increases Pin1 expression with an accompanying increase in phospho-Akt (Ser 473), p-Smad2, p-Smad3, TGF-ß1, and α-SMA in cardiac fibroblasts (CFs). These increases are effectively prevented by the inhibition of Pin1 by juglone. Furthermore, Pin1 inhibition inhibits HG-induced CF proliferation and migration. Our results indicate that Pin1 inhibition attenuates cardiac extracellular matrix deposition by regulating the phosphorylation of Akt, TGF-ß1/Smads, MMP activities, and α-SMA expression in diabetic mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Fibroblastos/metabolismo , Miocárdio/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibrose/prevenção & controle , Glucose/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Miocárdio/patologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Peptidilprolil Isomerase de Interação com NIMA/genética , Naftoquinonas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Smad Reguladas por Receptor/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Glia ; 57(7): 724-33, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18985733

RESUMO

There is increasing evidence that self-renewal capacity of cancer cells is critical for carcinogenesis; hence, it is vital to examine the expression and involvement of self-renewal regulatory genes in these cells. Here, we reported that Oct4, a well-known regulator of self-renewal in embryonic stem cells, was highly expressed in human gliomas and glioma cell lines, and the expression levels were increased in parallel with increasing glioma grades. In in vitro cell cultures, Oct4 was only expressed in rat C6 glioma cells and rat neural stem cells but not in rat brain differentiated cells. Downregulation of Oct4 expression by RNA interference in C6 cells was associated with reduced cell proliferation and colony formation. Further analysis revealed that Oct4 could upregulate phosphorylation of Stat3 to promote tumor cell proliferation. Overexpression of Oct4 in C6 cells increased the expression of nestin but decreased the expression of GFAP suggesting that Oct4 might inhibit the differentiation of glioma cells. Our findings may provide further evidence for the stem cell theory of carcinogenesis. In contrast, the results might also imply that Oct4 contributes to the existence of undifferentiated cells in gliomas.


Assuntos
Expressão Gênica , Glioma/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/patologia , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Estadiamento de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/citologia , Fator 3 de Transcrição de Octâmero/genética , Fosforilação , RNA Mensageiro/metabolismo , Ratos , Fator de Transcrição STAT3/metabolismo , Células-Tronco/metabolismo
9.
J Neurochem ; 106(4): 1720-30, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18624912

RESUMO

Hyperglycemia causes direct apoptosis of neural progenitor cells (NPCs) in diabetic-induced neural tube defects in embryos. However, the underlying mechanisms are poorly understood. The present study is aimed to investigate the specific cellular proteins that may be involved in NPCs apoptosis as well as mechanisms by which the proteins regulate the oxidative stress-induced NPCs apoptosis. Our present results have shown that the expression of c-Abl was up-regulated in NPCs exposed to high glucose in vitro. The increased c-Abl was localized mainly in the nucleus. High glucose also induced an increase in nuclear p53 protein levels and the p53-c-Abl complex in NPCs. Administration of reactive oxygen species scavengers decreased the protein level of c-Abl, p53 and NPCs apoptosis. Inhibition of c-Abl reduced NPCs apoptosis and the nuclear protein level of p53 in response to high glucose. These results demonstrate that c-Abl is involved in the reactive oxygen species-activated apoptotic pathways in NPCs apoptosis. Inhibition of c-Abl may protect NPCs against insults induced by high glucose via the modulation of NPCs apoptotic machinery.


Assuntos
Apoptose/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Glucose/toxicidade , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-abl/fisiologia , Células-Tronco/fisiologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Córtex Cerebral/embriologia , Glucose/administração & dosagem , Camundongos , Camundongos Mutantes , Neurônios/citologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-abl/biossíntese , Proteínas Proto-Oncogênicas c-abl/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA