Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 14: 56-66, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37252330

RESUMO

Carbohydrates have a protein sparing effect, but long-term feeding of a high-carbohydrate diet (HCD) leads to metabolic disorders due to the limited utilization efficiency of carbohydrates in fish. How to mitigate the negative effects induced by HCD is crucial for the rapid development of aquaculture. Uridine is a pyrimidine nucleoside that plays a vital role in regulating lipid and glucose metabolism, but whether uridine can alleviate metabolic syndromes induced by HCD remains unknown. In this study, a total of 480 Nile tilapia (Oreochromis niloticus) (average initial weight 5.02 ± 0.03 g) were fed with 4 diets, including a control diet (CON), HCD, HCD + 500 mg/kg uridine (HCUL) and HCD + 5,000 mg/kg uridine (HCUH), for 8 weeks. The results showed that addition of uridine decreased hepatic lipid, serum glucose, triglyceride and cholesterol (P < 0.05). Further analysis indicated that higher concentration of uridine activated the sirtuin1 (sirt1)/adenosine 5-monophosphate-activated protein kinase (AMPK) signaling pathway to increase lipid catabolism and glycolysis while decreasing lipogenesis (P < 0.05). Besides, uridine increased the activity of glycogen synthesis-related enzymes (P < 0.05). This study suggested that uridine could alleviate HCD-induced metabolic syndrome by activating the sirt1/AMPK signaling pathway and promoting glycogen synthesis. This finding reveals the function of uridine in fish metabolism and facilitates the development of new additives in aquatic feeds.

2.
J Nutr ; 150(9): 2322-2335, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720689

RESUMO

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid ß-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS: Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS: The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS: These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.


Assuntos
Ácidos Graxos/metabolismo , Glucose/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Proteínas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Ciclídeos , Citocromos b/genética , Citocromos b/metabolismo , DNA , Metabolismo Energético , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Homeostase , Insulina , Masculino , Mutação , Oxirredução , Peixe-Zebra
3.
J Hazard Mater ; 394: 122537, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32203715

RESUMO

Environmental estrogens, including bisphenol A (BPA) and 17ß-estradiol (E2), which are widely used in industries and medicine, pose a severe ecological threat to fish due to feminization induction. However, the related metabolic basis for reproductive feminization in male fish has not been well addressed. We first found that female zebrafish exhibited higher lipid accumulation and lipogenesis activity than males. Next, we exposed male and female zebrafish to E2 (200 ng/L) or BPA (100 µg/L) for six weeks, and observed an early-phase reproductive feminization in males, accompanied with reduced spermatids, significant fat deposition and lipogenic gene expressions that mimicked female patterns. Cellular signaling assays revealed that, E2 or BPA modulated lipid metabolism in males mainly through lowering 5' AMP-activated protein kinase (AMPK) and upregulating the lipogenic mechanistic target of rapamycin (mTOR) pathways. For the first time, we show that environmental estrogens could alter lipid metabolism in male fish to a female pattern (metabolic feminization) prior to gonad feminization in male fish, to allows males to accumulate efficiently lipids to harmonize with the feminized gonads. This study suggests that negative effects of environmental estrogens, as hazardous materials, on vertebrate health are more complicated than originally thought.


Assuntos
Compostos Benzidrílicos/toxicidade , Estradiol/toxicidade , Estrogênios não Esteroides/toxicidade , Feminização/induzido quimicamente , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenóis/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Feminino , Peixes , Gônadas/efeitos dos fármacos , Masculino , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
4.
Chemosphere ; 237: 124422, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31352104

RESUMO

Environmental estrogenic compounds are important pollutants, which are widely distributed in natural water bodies. They produce various adverse effects on fish, but their concentration-dependent toxicities in fish metabolism and health are not fully understood. This study investigated the effects of 17ß-estradiol (E2) and bisphenol A (BPA) at low and high concentrations on lipid deposition, inflammation and antioxidant response in male zebrafish. We measured fish growth parameters, gonad development, lipid contents and the activities of inflammatory and antioxidant enzymes, as well as their mRNA expressions. All E2 and BPA concentrations used increased body weight, damaged gonad structure and induced feminization in male zebrafish. The exposure of zebrafish to E2 and BPA promoted lipid accumulation by increasing total fat, liver triglycerides and free fatty acid contents, and also upregulated lipogenic genes expression, although they decreased total cholesterol content. Notably, zebrafish exposed to low concentrations of E2 (200 ng/L) and BPA (100 µg/L) had higher lipid synthesis and deposition compared to high concentrations (2000 ng/L and 2000 µg/L, respectively). However, the high concentrations of E2 and BPA increased inflammation and antioxidant response. Furthermore, BPA caused greater damage to fish gonad development and more severe lipid peroxidation compared to E2. Overall, the results suggest that the toxic effects of E2 and BPA on zebrafish are concentration-dependent such that, the relative low concentrations used induced lipid deposition, whereas the high ones caused adverse effects on inflammation and antioxidant response.


Assuntos
Antioxidantes/metabolismo , Compostos Benzidrílicos/farmacologia , Estradiol/farmacologia , Inflamação/induzido quimicamente , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenóis/farmacologia , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos/metabolismo , Relação Dose-Resposta a Droga , Estradiol/metabolismo , Estrogênios/farmacologia , Gônadas/efeitos dos fármacos , Inflamação/metabolismo , Masculino , Fenóis/metabolismo , Diferenciação Sexual , Peixe-Zebra/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-31220619

RESUMO

Cold stress is a major threat to fish in both nature and aquaculture, and can induce oxidative stress in various fish. While the exact role of oxidative stress in cold-caused mortality is still unknown. The purpose of the present study was to evaluate the effects of oxidative stress on cold tolerance in fish and verify whether changing oxidative status could affect cold tolerance. We firstly demonstrated that acute cold exposure induced high oxidative stress in zebrafish liver, which may lead to mortality. Then we performed in vivo and in vitro experiments to determine the effects of the altered oxidative status on cold tolerance in zebrafish and zebrafish liver cell line (ZFL), respectively. In the in vivo study, the zebrafish which were fed with α-lipoic acid or reduced glutathione had lower cold-caused oxidative stress and tissues damage, and showed higher cold tolerance. In the experiment using zebrafish cells, increasing oxidative stress by H2O2 decreased the cellular cold tolerance, and the cold tolerance was partly recovered when oxidative stress was reduced by the addition of Vitamin C (VC). Taken together, we conclude that the reduction of oxidative stress increases cold tolerance in fish.


Assuntos
Resposta ao Choque Frio/fisiologia , Estresse Oxidativo/fisiologia , Peixe-Zebra/fisiologia , Animais , Antioxidantes/farmacologia , Temperatura Baixa/efeitos adversos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/fisiologia , Oxirredução , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Environ Pollut ; 240: 733-744, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778059

RESUMO

Dietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%-5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs.


Assuntos
Dioxinas/análise , Óleos de Peixe/química , Contaminação de Alimentos/análise , Bifenilos Policlorados/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes-Gato/metabolismo , Ciclídeos/metabolismo , Pesqueiros , Humanos , Oceanos e Mares , Poluentes Químicos da Água/análise
7.
Gene ; 641: 1-7, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29038001

RESUMO

G0/G1 switch gene 2 plays an important role in the regulation of lipolysis in mammals, but little is known about its gene (G0S2) structure and function in fish. In the present study, two genes, G0S2a and G0S2b were isolated and characterized from grass carp Ctenopharyngodon idella, which encode peptides of 111 and 84 amino acids, respectively. Moreover, alternative multiple exon usage resulted in a significant variation in the 5'-region of G0S2a transcripts yielding two isoforms (G0S2a1 and G0S2a2). Phylogenetic and synteny analyses indicated that G0S2a and G0S2b could have originated from the teleost-specific genome duplication event. Analysis of the exon-intron structures clarified that G0S2a contained an extra intron compared with G0S2b. G0S2a1, G0S2a2 and G0S2b mRNAs were highly expressed in adipose tissue and liver. G0S2a was localized to the cytoplasm and nucleus, while G0S2b was mainly localized in cytoplasm, suggesting that G0S2a and G0S2b may have different functions in grass carp. PPARα agonist caused an increase in G0S2a1 and G0S2b expression, revealing that they are subject to transcriptional control by PPARα-mediated signals. TNF-α treatment decreased G0S2a1 and G0S2a2 transcripts that paralleled TNF-α downregulation of PPARα; however, only the effects of TNF-α on G0S2a1 were attenuated by treatment with PPARα agonist. Our findings identify G0S2a, not G0S2b, as a target gene for TNF-α and reveal that TNF-α suppresses G0S2a1 gene expression through a PPARα-dependent pathway in grass carp hepatocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cyprinidae/metabolismo , Hepatócitos/metabolismo , PPAR alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Cyprinidae/genética , Regulação para Baixo/genética , Células HEK293 , Humanos , Lipólise/genética , Fígado/metabolismo , Isoformas de Proteínas/genética , Transcrição Gênica/genética
8.
Fish Shellfish Immunol ; 67: 359-367, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28619361

RESUMO

This study evaluated the protective effect of α-lipoic acid (LA) on n-3 highly unsaturated fatty acids (HUFAs)-induced lipid peroxidation in grass carp. The result indicated that diets with n-3 HUFAs increased the production of malondialdehyde (MDA) (P < 0.05), thereby inducing lipid peroxidation in liver and muscle of grass carp. Meanwhile, compared with control group, the hepatosomatic index (HSI) and kidney index (KI) of grass carp were markedly increased in n-3 HUFAs-only group. However, diets with LA remarkably inhibited the n-3 HUFAs-induced increase of HSI, KI, and MDA level in serum, liver and muscle (P < 0.05). Interestingly, LA also significantly elevated the ratio of total n-3 HUFAs in fatty acid composition of muscle and liver (P < 0.05). Furthermore, LA significantly promoted the activity of antioxidant enzymes in serum, muscle and liver of grass carp (P < 0.05), including superoxide dismutase (SOD), catalase (CAT), and glutathione s-transferase (GST). The further results showed that LA significantly elevated mRNA expression of antioxidant enzymes with promoting the mRNA expression of NF-E2-related nuclear factor 2 (Nrf2) and decreasing Kelch-like-ECH-associated protein 1 (Keap1) mRNA level. From the above, these results suggested that LA could attenuate n-3 HUFAs-induced lipid peroxidation, remit the toxicity of the lipid peroxidant, and protect n-3 HUFAs against lipid peroxidation to promote its deposition in fish, likely strengthening the activity of antioxidant enzymes through regulating mRNA expressions of antioxidant enzyme genes via mediating Nrf2-Keap1 signaling pathways.


Assuntos
Antioxidantes/metabolismo , Carpas/imunologia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/metabolismo , Peroxidação de Lipídeos , Ácido Tióctico , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/imunologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , Distribuição Aleatória , Transdução de Sinais/imunologia
9.
Dev Comp Immunol ; 71: 8-17, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28111231

RESUMO

Pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNFα), may contribute to hepatic steatosis in the situation of excess lipid accumulation in farmed fish. Pigment epithelium-derived factor (PEDF) is an endogenous anti-inflammatory factor and promotes lipolysis. Accordingly, we isolated PEDF from grass carp and investigated its role in TNFα-induced hepatic steatosis. Sequence analysis showed that PEDF gene, which possesses 8 exons and 7 introns, encodes a protein with 409 amino acids. PEDF was a critical determinant of the transcriptional response to nutrient availability in grass carp. Endogenous PEDF was an intracellular protein with cytoplasmic distribution and directly interacts with adipose triglyceride lipase (ATGL), which might mediate PEDF-induced lipolysis. TNFα significantly promoted lipid accumulation in vivo and in vitro, accompanied with a decrease in mRNA levels of PEDF and peroxisome proliferator-activated receptor alpha (PPARα). Recombinant PEDF and PPARα agonist diminished the TNFα-induced hepatic steatosis. Meanwhile, PPARα agonist caused an increase in PEDF expression, suggesting that TNFα antagonizes the actions of PEDF possibly in a PPARα-dependent manner. These findings suggest that PEDF is an important protective factor against hepatic steatosis induced by TNFα, which provided a new therapeutic target for inflammation-associated hepatic steatosis.


Assuntos
Carpas/imunologia , Proteínas do Olho/metabolismo , Fígado Gorduroso/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Inflamação/imunologia , Fatores de Crescimento Neural/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Serpinas/metabolismo , Animais , Clonagem Molecular , Proteínas do Olho/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Estruturas Genéticas , Lipase/metabolismo , Lipólise , Fatores de Crescimento Neural/genética , PPAR alfa/metabolismo , Serpinas/genética , Fator de Necrose Tumoral alfa/imunologia
10.
PLoS One ; 11(10): e0163895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27701432

RESUMO

Gender is one of the factors influencing the intestinal microbial composition in mammals, but whether fish also have gender-specific intestinal microbial patterns remains unknown. In this decade, endocrine disrupting chemicals in surface and ground water of many areas and increasing observation of freshwater male fish displaying female sexual characteristics have been reported. Here we identified the difference in intestinal microbiota between male and female zebrafish, and revealed the influence of endocrine disrupting chemicals on zebrafish intestinal microbiota by using high-throughput sequencing. The results indicated that Fusobacteria, Bacteroidetes and Proteobacteria were dominant in the gut of zebrafish and there were no obvious gender-specific intestinal microbial patterns. Two endocrine disrupting chemicals, Estradiol (E2) and Bisphenol A (BPA), were selected to treat male zebrafish for 5 weeks. E2 and BPA increased vitellogenin expression in the liver of male zebrafish and altered the intestinal microbial composition with the abundance of the phylum CKC4 increased significantly. Our results suggested that because of the developmental character and living environment, gender did not influence the assembly of intestinal microbiota in zebrafish as it does in mammals, but exposure extra to endocrine disrupting chemicals disturbed the intestinal microbial composition, which may be related to changes in host physiological metabolism.


Assuntos
Bacteroidetes/isolamento & purificação , Estrogênios/farmacologia , Fusobactérias/isolamento & purificação , Proteobactérias/isolamento & purificação , Peixe-Zebra/microbiologia , Animais , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Compostos Benzidrílicos/farmacologia , Estradiol/farmacologia , Feminino , Fusobactérias/efeitos dos fármacos , Fusobactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Fenóis/farmacologia , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de DNA/métodos , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo
11.
Sci Total Environ ; 536: 933-945, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26105705

RESUMO

Shanghai is a Chinese megacity in the Yangtze River Delta area, one of the most polluted coastal areas in China. The inhabitants of Shanghai have very high aquatic product consumption rates. A risk-benefit assessment of the co-ingestion of fish nutrients and contaminants has not previously been performed for Shanghai residents. Samples of five farmed fish species (marine and freshwater) with different feeding habits were collected from Shanghai markets in winter and summer. Fatty acids, protein, mercury, cadmium, lead, copper, polychlorinated biphenyls, hexachlorocyclohexanes, and dichlorodiphenyltrichloroethanes were measured in liver, abdominal fat, and dorsal, abdominal, and tail muscles from fish. Tolerable daily intakes and benefit-risk quotients were calculated to allow the benefits and risks of co-ingesting n-3 long-chain polyunsaturated fatty acids and contaminants to be assessed according to the cancer slope factors and reference doses of selected pollutants. All of the contaminant concentrations in the muscle tissues were much lower than the national maximum limits, but the livers generally contained high Hg concentrations, exceeding the regulatory limit. The organic pollutant and n-3 long-chain polyunsaturated fatty acid concentrations correlated with the lipid contents of the fish tissues, and were higher in carnivorous marine fish than in omnivorous and herbivorous freshwater fish. The tolerable daily intakes, risk-benefit quotients, and current daily aquatic product intakes for residents of large Chinese cities indicated that the muscle tissues of most of the fish analyzed can be consumed regularly without significant contaminant-related risks to health. However, attention should be paid to the potential risks posed by dichlorodiphenyltrichloroethane in large yellow croaker and Hg in tilapia. Based on the results of this study, we encourage people to consume equal portions of marine and freshwater fish.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Peixes/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , China , Cidades , Monitoramento Ambiental , Humanos , Nível de Efeito Adverso não Observado , Medição de Risco
12.
Gene ; 565(2): 192-200, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25865300

RESUMO

n-3 highly unsaturated fatty acids (n-3 HUFAs) have been shown to suppress lipid accumulation and improve protein utilization in grass carp; however, little is known about the underlying molecular mechanism. Hence, we analyzed the hepatopancreas transcriptome of grass carp (Ctenopharyngodon idellus) fed either lard oil (LO) or fish oil (FO) diets. RNA-seq data showed that 125 genes were significantly up-regulated and 107 were significantly down-regulated in the FO group. Among them, 17 lipid metabolism related genes, 12 carbohydrate metabolism related genes, and 34 protein metabolism related genes were selected. Lipid metabolism related genes, such as very long-chain acyl-CoA synthetase (ACSVL),carnitine O-palmitoyltransferase 1 (CPT1) and carnitine-acylcarnitine translocase (CACT), were up-regulated in the FO group. But the genes of diacylglycerol O-acyltransferase 2 (DGAT2) and stearoyl-CoA desaturase (SCD) were down-regulated. Down-regulation of glycolysis related genes, such as 6-phosphofructokinase (PFK), phosphoglycerate kinase (PGK) and pyruvate dehydrogenase kinase (PDK), added with up-regulation of gluconeogenesis related genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), suggests lower utilization of carbohydrate of the FO group. Besides, dietary FO also influenced the protein metabolism related genes, such as up-regulation of genes involved in digestion of dietary protein, mRNA transcription, protein translation and amino acid utilization, down-regulation of genes involved in mRNA degradation and ubiquitination of protein. Interestingly, the up-regulation of mitochondrial uncoupling protein 2 (UCP2) and down-regulation of oxidative phosphorylation related genes (cytochrome c oxidase subunit 4 isoform 2 [COX4I2], HIG1 domain family member 1A [HIGD1A] and cytochrome-b5 reductase [CYB5R]) suggest that energy metabolism may be also influenced by dietary fatty acid composition. These findings presented here provide a comprehensive understanding of the molecular mechanisms governing the effects of fish oil in grass carp.


Assuntos
Carpas/genética , Carpas/metabolismo , Gorduras na Dieta/metabolismo , Óleos de Peixe/metabolismo , Hepatopâncreas/metabolismo , Transcriptoma/genética , Animais , Metabolismo dos Carboidratos/genética , Dieta/métodos , Regulação para Baixo/genética , Metabolismo Energético/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glicólise/genética , Metabolismo dos Lipídeos/genética , Proteínas/metabolismo , Transcrição Gênica/genética , Regulação para Cima/genética
13.
Br J Nutr ; 108(8): 1455-65, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22221492

RESUMO

Dietary intervention studies to assess the cardioprotective effects of oily fish are scarce in China. The present study aimed to examine the effects of the oily fish, Norwegian salmon, herring and local farmed pompano (Trachinotus ovatus) on CVD risk markers when included in the Chinese diet. In this 8-week, parallel-arm, randomised intervention study, 126 Chinese women with hypertriacylglycerolaemia, aged 35-70 years, were assigned to four groups to consume an experimental lunch containing 80 g fillets of either one of three oily fish or a mix of commonly eaten meats (pork/chicken/beef/lean fish) for 5 d/week. The results showed that inclusion of the three oily fish significantly increased the intake of n-3 long-chain PUFA (LC-PUFA) while decreasing the dietary n-6:n-3 PUFA ratio. Compared to the control group, significant increases of DHA, EPA+DHA and total n-3 PUFA in plasma choline phosphoglyceride were observed in the three oily fish groups. Plasma TAG levels were significantly reduced only in the salmon and herring groups. When compared to the baseline level, the three oily fish diets significantly decreased serum concentrations of TAG, apoB, apoCII and apoCIII, but only the salmon and herring diets significantly lowered TNF-α and raised adiponectin levels in serum. The salmon diet additionally decreased the serum concentration of IL-6. To conclude, dietary inclusion of salmon, herring and pompano as oily fish can effectively increase serum n-3 LC-PUFA content and are associated with favourable biochemical changes in dyslipidaemic middle-aged and elderly Chinese women, and these beneficial effects are mainly associated with n-3 LC-PUFA contents.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Dieta , Gorduras na Dieta/uso terapêutico , Dislipidemias/dietoterapia , Óleos de Peixe/uso terapêutico , Peixes , Lipídeos/sangue , Adiponectina/sangue , Adulto , Idoso , Animais , Apolipoproteínas/sangue , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , China , Gorduras na Dieta/sangue , Gorduras na Dieta/farmacologia , Dislipidemias/sangue , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Óleos de Peixe/sangue , Óleos de Peixe/farmacologia , Humanos , Interleucina-6/sangue , Carne , Pessoa de Meia-Idade , Fosfatidilcolinas/química , Fatores de Risco , Salmão , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
14.
Lipids ; 45(12): 1147-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20963508

RESUMO

Exploring the capabilities of instrumental techniques for discriminating n-3 rich oils derived from animals is a very important though much neglected area that was emphasized more than 100 years ago. In this study the potential of gas chromatography (GC) for discriminating full fatty acid methyl ester (FAME) profiles from fish (cod liver and salmon) and marine mammal (seal and whale) oils is evaluated by means of principal component analysis (PCA). The FAME profiles from plant oils such as rapeseed, linseed and soy oils and seven different brands of n-3 supplements are also used in the discrimination process. The results from the PCA plots can reliably distinguish between plant, n-3 supplements, fish and marine mammal oils. By removing the contribution of the n-3 supplements and plant oils it is possible to discriminate between types of fish and marine animal oils. GC offers a rapid, simple and convenient means of discriminating oils from different species, brands and grades.


Assuntos
Cromatografia Gasosa/métodos , Ácidos Graxos Ômega-3/análise , Óleos de Peixe/química , Animais , Gorduras Insaturadas na Dieta/análise , Suplementos Nutricionais , Peixes , Salmão
15.
Talanta ; 82(4): 1261-70, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20801327

RESUMO

Though liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS(2)) has been widely used in the structural elucidation of triacylglycerols (TAG) in vegetable oils, its potentiality for the identification of TAG molecules in omega-3 rich oils remains unexplored till date. Hence, this article investigates the applicability of LC-ESI-MS(2) for the structural characterization of naturally occurring TAG in cod liver oil without the TAG fractionation during the sample preparation. A computational algorithm was developed to automatically interpret the mass spectra and elucidate the TAG structures respectively. The results were compared against the lipase benchmark method. A principal component analysis study revealed that it is possible to discriminate genuine from adulterated cod liver oil.


Assuntos
Cromatografia Líquida/métodos , Óleo de Fígado de Bacalhau/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Triglicerídeos/análise
16.
Nutr Res ; 30(7): 447-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20797476

RESUMO

Although the beneficial effects of n-3 fatty acids on several physiologic functions have been widely reported, information about the effects of oily fish in the Asian diet on cardiovascular disease (CVD) risk is diminutive. We hypothesize that daily inclusion of oily fish for 8 weeks in the Chinese diet will elevate serum eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and reduce CVD risk markers in dyslipidemic adult men, comparable with the effects generally observed by inclusion of oily fish in the Western diet. In this 8-week randomized, parallel-arm, food-based intervention study, lunches were prepared with 500 g pork/chicken/beef, typically consumed fish (hairtail and freshwater carp), or oily fish (salmon). Male subjects aged between 35 and 70 years with hyperlipidemia were randomly assigned to eat lunches with pork/chicken/beef (n = 30 subjects at 8 weeks), freshwater fish (n = 30), or oily fish (n = 32). Circulating markers were measured at baseline and at 8 weeks. In the oily fish diet, dietary EPA and DHA levels were significantly increased as compared with other diets; and the n-6:n-3 polyunsaturated fatty acid ratio was decreased (P < .05). Thus, the oily fish diet significantly elevated serum EPA and DHA concentrations (P < .01) and lowered serum n-6:n-3 ratio at 8 weeks (P < .05). Furthermore, oily fish intake significantly reduced serum levels of triglycerides (P < .05) and interleukin-6 (P < .01) and increased levels of high-density lipoprotein cholesterol (P < .01). In conclusion, daily inclusion of oily fish as part of the Chinese diet for 8 weeks is sufficient to significantly increase the serum content of long-chain n-3 polyunsaturated fatty acids and reduce levels of CVD risk markers in dyslipidemic adult men.


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/prevenção & controle , Dieta , Hiperlipidemias/dietoterapia , Salmão , Adulto , Idoso , Animais , China , HDL-Colesterol/sangue , Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Ácidos Graxos/sangue , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA