Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115791, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070417

RESUMO

Aluminum (Al), a non-essential metal for plant growth, exerts significant phytotoxic effects, particularly on root growth. Anthropogenic activities would intensify Al's toxic effects by releasing Al3+ into the soil solution, especially in acidic soils with a pH lower than 5.5 and rich mineral content. The severity of Al-induced phytotoxicity varies based on factors such as Al concentration, ionic form, plant species, and growth stages. Al toxicity leads to inhibited root and shoot growth, reduced plant biomass, disrupted water uptake causing nutritional imbalance, and adverse alterations in physiological, biochemical, and molecular processes. These effects collectively lead to diminished plant yield and quality, along with reduced soil fertility. Plants employ various mechanisms to counter Al toxicity under stress conditions, including sequestering Al in vacuoles, exuding organic acids (OAs) like citrate, oxalate, and malate from root tip cells to form Al-complexes, activating antioxidative enzymes, and overexpressing Al-stress regulatory genes. Recent advancements focus on enhancing the exudation of OAs to prevent Al from entering the plant, and developing Al-tolerant varieties. Gene transporter families, such as ATP-Binding Cassette (ABC), Aluminum-activated Malate Transporter (ALMT), Natural resistance-associated macrophage protein (Nramp), Multidrug and Toxic compounds Extrusion (MATE), and aquaporin, play a crucial role in regulating Al toxicity. This comprehensive review examined recent progress in understanding the cytotoxic impact of Al on plants at the cellular and molecular levels. Diverse strategies developed by both plants and scientists to mitigate Al-induced phytotoxicity were discussed. Furthermore, the review explored recent genomic developments, identifying candidate genes responsible for OAs exudation, and delved into genome-mediated breeding initiatives, isolating transgenic and advanced breeding lines to cultivate Al-tolerant plants.


Assuntos
Alcaloides , Alumínio , Alumínio/toxicidade , Alumínio/metabolismo , Malatos/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Alcaloides/farmacologia , Compostos Orgânicos/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Front Microbiol ; 13: 990329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171745

RESUMO

Soil chromium toxicity usually caused by the tannery effluent compromises the environment and causes serious health hazards. The microbial role in strengthening biochar for its soil chromium immobilization remains largely unknown. Hence, this study evaluated the effectiveness of zinc and iron-enriched rice husk biochar (ZnBC and FeBC) with microbial combinations to facilitate the chromium immobilization in sandy loam soil. We performed morphological and molecular characterization of fungal [Trichoderma harzianum (F1), Trichoderma viride (F2)] and bacterial [Pseudomonas fluorescence (B1), Bacillus subtilis (B2)] species before their application as soil ameliorants. There were twenty-five treatments having ZnBC and FeBC @ 1.5 and 3% inoculated with bacterial and fungal isolates parallel to wastewater in triplicates. The soil analyses were conducted in three intervals each after 20, 30, and 40 days. The combination of FeBC 3%+F2 reduced the soil DTPA-extractable chromium by 96.8% after 40 days of incubation (DAI) relative to wastewater. Similarly, 92.81% reduction in chromium concentration was achieved through ZnBC 3%+B1 after 40 DAI compared to wastewater. Under the respective treatments, soil Cr(VI) retention trend increased with time such as 40 > 30 > 20 DAI. Langmuir adsorption isotherm verified the highest chromium adsorption capacity (41.6 mg g-1) with FeBC 3% at 40 DAI. Likewise, principal component analysis (PCA) and heat map disclosed electrical conductivity-chromium positive, while cation exchange capacity-chromium and pH-organic matter negative correlations. PCA suggested the ZnBC-bacterial while FeBC-fungal combinations as effective Cr(VI) immobilizers with >70% data variance at 40 DAI. Overall, the study showed that microbes + ZnBC/FeBC resulted in low pH, high OM, and CEC, which ultimately played a role in maximum Cr(VI) adsorption from wastewater applied to the soil. The study also revealed the interrelation and alternations in soil dynamics with pollution control treatments. Based on primitive soil characteristics such as soil metal concentration, its acidity, and alkalinity, the selection criteria can be set for treatments application to regulate the soil properties. Additionally, FeBC with Trichoderma viride should be tested on the field scale to remediate the Cr(VI) toxicity.

3.
Mitochondrial DNA B Resour ; 7(1): 208-210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35071757

RESUMO

Holotrichia parallela (Motschulsky, 1854) is an important pest for peanut, potato, and soybean in China, and it causes great economic losses. In this study, we sequenced and analyzed the complete mitochondrial genome (mitogenome) of H. parallela. This mitogenome was 16,975 bp long and encoded 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs). Gene order was conserved and identical to most other previously sequenced Scarabaeidae. Most PCGs of H. parallela have the conventional start codons ATN, with the exception of cox1 (AAC). Except for three genes (cox1, cox2, and cox3) end with the incomplete stop codon T-, all other PCGs terminated with the stop codon TAA or TAG. Phylogenetic analysis positioned H. parallela in a well-supported clade with Rhopaea magnicornis, Polyphylla gracilicornis, and Melolontha hippocastani. The relationships (Dynastinae+(Cetoniinae+(Melolonthinae+(Rutelinae + Scarabaeinae)))) were supported in Scarabaeidae.

4.
PLoS One ; 16(7): e0253798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252095

RESUMO

Anthropogenic activities such as mining, manufacturing, and application of fertilizers release substantial quantities of cadmium (Cd) into the environment. In the natural environment, varying pH may play an important role in the absorption and accumulation of Cd in plants, which can cause toxicity and increase the risk to humans. We conducted a hydroponic experiment to examine the impact of pH on cadmium (Cd) solubility and bioavailability in winter wheat (Triticum aestivum L.) under controlled environmental conditions. The results showed that Cd concentration was significantly reduced in wheat with an increase in pH from 5 to 7, while it was dramatically increased at pH ranging from 7 to 9. However, in both cases, a significant reduction in physiological traits was observed. The addition of Cd (20, 50, and 200 µmol L-1) at all pH levels caused a substantial decline in wheat growth, chlorophyll and carotenoids contents, nutrient availability, while elevated cell membrane damage was observed in terms of electrolytic leakage (EL), osmoprotectants, and antioxidants activity. In our findings, the negative effects of acidic pH (5) on wheat growth and development were more pronounced in the presence of Cd toxicities. For instance, Cd concentration with 20, 50, and 200 µmol L-1 at acidic pH (5) reduced shoot dry biomass by 45%, 53%, and 79%, total chlorophyll contents by 26%, 41%, 56% while increased CAT activity in shoot by 109%, 175%, and 221%, SOD activity in shoot by 122%, 135%, and 167%, POD activity in shoot by 137%, 250%, and 265%, MDA contents in shoot by 51%, 83%, and 150%, H2O2 contents in shoot by 175%, 219%, and 292%, EL in shoot by 108%, 165%, and 230%, proline contents in shoot by 235%, 280%, and 393%, respectively as compared to neutral pH without Cd toxicities. On the other hand, neutral pH with Cd toxicities alleviated the negative effects of Cd toxicity on wheat plants by limiting Cd uptake, reduced reactive oxygen species (ROS) formation, and increased nutrient availability. In conclusion, neutral pH minimized the adverse effects of Cd stress by minimizing its uptake and accumulation in wheat plants.


Assuntos
Cádmio/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Triticum/crescimento & desenvolvimento , Cádmio/metabolismo , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Hidroponia/métodos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Poluentes do Solo/metabolismo , Triticum/química , Triticum/efeitos dos fármacos , Triticum/metabolismo
5.
Sci Rep ; 11(1): 1958, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479268

RESUMO

Silicon (Si), as a quasi-essential element, has a vital role in alleviating the damaging effects of various environmental stresses on plants. Cadmium (Cd) stress is severe abiotic stress, especially in acidic ecological conditions, and Si can demolish the toxicity induced by Cd as well as acidic pH on plants. Based on these hypotheses, we demonstrated 2-repeated experiments to unfold the effects of Si as silica gel on the root morphology and physiology of wheat seedling under Cd as well as acidic stresses. For this purpose, we used nine treatments with three levels of Si nanoparticles (0, 1, and 3 mmol L-1) derived from sodium silicate (Na2SiO3) against three concentrations of Cd (0, 50, and 200 µmol L-1) in the form of cadmium chloride (CdCl2) with three replications were arranged in a complete randomized design. The pH of the nutrient solution was adjusted at 5. The averages of three random replications showed that the mutual impacts of Si and Cd in acidic pH on wheat roots depend on the concentrations of Si and Cd. The collective or particular influence of low or high levels of Si (1 or 3 mM) and acidic pH (5) improved the development of wheat roots, and the collective influence was more significant than that of a single parallel treatment. The combined effects of low or high concentrations of Cd (50 or 200 µM) and acidic pH significantly reduced root growth and biomass while increased antioxidants, and reactive oxygen species (ROS) contents. The incorporation of Si (1 or 3 mmol L-1) in Cd-contaminated acidic nutrient solution promoted the wheat root growth, decreased ROS contents, and further increased the antioxidants in the wheat roots compared with Cd single treatments in acidic pH. The demolishing effects were better with a high level of Si (3 mM) than the low level of Si (1 Mm). In conclusion, we could suggest Si as an effective beneficial nutrient that could participate actively in several morphological and physiological activities of roots in wheat plants grown under Cd and acidic pH stresses.

6.
Sci Total Environ ; 572: 626-633, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567319

RESUMO

Untreated municipal sewage is a potential source of Cd but has been used for irrigating vegetables in many countries in recent years. In growing vegetables and fruits in greenhouses, seedling breeding method is generally used in which the seedlings are transplanted into soils together with their seedling culture. Biochar has been increasingly used to amend soils contaminated by heavy metals, but there are few studies on the effectiveness of different ways of applying the biochar. In this paper, we investigated the efficacy of immobilizing Cd by amending eggplant seedling bed with biochar before transplanting them to biochar-amended soil contaminated by Cd. The results showed that, in comparison with traditional seedling method (without adding biochar), amending the seedling bed by biochar not only had a positive effect on plant growth and production, but further reduced the Cd concentration in the roots, shoots and the fruits by 12.2%, 12.5% and 18.5%, respectively. Furthermore, it increased the pH in rhizosphere to 8.83, reduced the exchangeable Cd concentration in soil by 28.6%, and decreased the Cd bio-accumulation factor from 0.36 to 0.32. Phytochelatin synthesis could be induced when plants are exposed to Cd and it has been used in the literature as a biomarker for evaluating metal toxicity. Our results showed that the seedling culture amended with biochar reduced phytochelatin synthesis in both roots and shoots. It can therefore be concluded that amending the eggplant seedlings bed with biochar can further enhance the effectiveness of remediating Cd contamination in soil after transplanting the plants into soil also amended with biochar. CAPSULE ABSTRACT: We found a new method to further immobilize Cd in contaminated soils by amending the seedling bed with biochar.


Assuntos
Cádmio , Carvão Vegetal , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo , Solanum melongena/crescimento & desenvolvimento , Disponibilidade Biológica , Cádmio/análise , Cádmio/farmacocinética , Carvão Vegetal/farmacologia , Cisteína/metabolismo , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Hidroponia , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Rizosfera , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Solanum melongena/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA