Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961297

RESUMO

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here, we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain of function mutation p.E1099K, resulting in growth suppression, apoptosis, and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 in a covalent and reversible manner to recruit the SCF FBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCF FBXO22 . Overall, we present a highly potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a novel FBXO22-dependent TPD strategy.

2.
Nat Chem Biol ; 18(8): 821-830, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578032

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors.


Assuntos
Proteína-Arginina N-Metiltransferases , Neoplasias de Mama Triplo Negativas , Biomarcadores , Linhagem Celular Tumoral , Humanos , Interferons/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Nucleic Acids Res ; 50(6): 3505-3522, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35244724

RESUMO

Despite MYC dysregulation in most human cancers, strategies to target this potent oncogenic driver remain an urgent unmet need. Recent evidence shows the PP1 phosphatase and its regulatory subunit PNUTS control MYC phosphorylation, chromatin occupancy, and stability, however the molecular basis remains unclear. Here we demonstrate that MYC interacts directly with PNUTS through the MYC homology Box 0 (MB0), a highly conserved region recently shown to be important for MYC oncogenic activity. By NMR we identified a distinct peptide motif within MB0 that interacts with PNUTS residues 1-148, a functional unit, here termed PNUTS amino-terminal domain (PAD). Using NMR spectroscopy we determined the solution structure of PAD, and characterised its MYC-binding patch. Point mutations of residues at the MYC-PNUTS interface significantly weaken their interaction both in vitro and in vivo, leading to elevated MYC phosphorylation. These data demonstrate that the MB0 region of MYC directly interacts with the PAD of PNUTS, which provides new insight into the control mechanisms of MYC as a regulator of gene transcription and a pervasive cancer driver.


Assuntos
Cromatina , Proteínas Nucleares , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/genética , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/genética
4.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529165

RESUMO

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , DNA de Neoplasias/metabolismo , Instabilidade Genômica , Neoplasias Mamárias Animais/metabolismo , Neoplasias Ovarianas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , DNA de Neoplasias/genética , Feminino , Loci Gênicos , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/genética
5.
Nat Commun ; 11(1): 4205, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826891

RESUMO

Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.


Assuntos
Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Camundongos , Fosforilação Oxidativa , Proteômica , Pirazóis/farmacologia , Piridinas/farmacologia , Quinolinas , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Ubiquitina-Proteína Ligases/genética
6.
Nucleic Acids Res ; 48(14): 7728-7747, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32609811

RESUMO

UHRF1 is an important epigenetic regulator associated with apoptosis and tumour development. It is a multidomain protein that integrates readout of different histone modification states and DNA methylation with enzymatic histone ubiquitylation activity. Emerging evidence indicates that the chromatin-binding and enzymatic modules of UHRF1 do not act in isolation but interplay in a coordinated and regulated manner. Here, we compared two splicing variants (V1, V2) of murine UHRF1 (mUHRF1) with human UHRF1 (hUHRF1). We show that insertion of nine amino acids in a linker region connecting the different TTD and PHD histone modification-binding domains causes distinct H3K9me3-binding behaviour of mUHRF1 V1. Structural analysis suggests that in mUHRF1 V1, in contrast to V2 and hUHRF1, the linker is anchored in a surface groove of the TTD domain, resulting in creation of a coupled TTD-PHD module. This establishes multivalent, synergistic H3-tail binding causing distinct cellular localization and enhanced H3K9me3-nucleosome ubiquitylation activity. In contrast to hUHRF1, H3K9me3-binding of the murine proteins is not allosterically regulated by phosphatidylinositol 5-phosphate that interacts with a separate less-conserved polybasic linker region of the protein. Our results highlight the importance of flexible linkers in regulating multidomain chromatin binding proteins and point to divergent evolution of their regulation.


Assuntos
Processamento Alternativo , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Histonas/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Código das Histonas , Humanos , Camundongos , Ligação Proteica , Domínio Tudor , Ubiquitina-Proteína Ligases/genética
7.
Nucleic Acids Res ; 47(17): 9433-9447, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31400120

RESUMO

Histone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. The catalytic activity of this family is dependent on interactions with additional conserved proteins, but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering, cross-linking mass spectrometry, nuclear magnetic resonance spectroscopy and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 ß-propeller domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.


Assuntos
Proteínas de Ligação a DNA/química , Histona-Lisina N-Metiltransferase/química , Histonas/química , Proteína de Leucina Linfoide-Mieloide/química , Catálise , Proteínas de Ligação a DNA/genética , Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisina/genética , Metilação , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteína de Leucina Linfoide-Mieloide/genética , Domínios PR-SET/genética , Conformação Proteica , Mapas de Interação de Proteínas/genética , Repetições WD40/genética
8.
Nat Commun ; 10(1): 1915, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015424

RESUMO

Bromodomains (BRDs) are conserved protein interaction modules which recognize (read) acetyl-lysine modifications, however their role(s) in regulating cellular states and their potential as targets for the development of targeted treatment strategies is poorly understood. Here we present a set of 25 chemical probes, selective small molecule inhibitors, covering 29 human bromodomain targets. We comprehensively evaluate the selectivity of this probe-set using BROMOscan and demonstrate the utility of the set identifying roles of BRDs in cellular processes and potential translational applications. For instance, we discovered crosstalk between histone acetylation and the glycolytic pathway resulting in a vulnerability of breast cancer cell lines under conditions of glucose deprivation or GLUT1 inhibition to inhibition of BRPF2/3 BRDs. This chemical probe-set will serve as a resource for future applications in the discovery of new physiological roles of bromodomain proteins in normal and disease states, and as a toolset for bromodomain target validation.


Assuntos
Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Acetilação , Sequência de Aminoácidos , Antineoplásicos/química , Linhagem Celular Tumoral , Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/deficiência , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Ensaios de Triagem em Larga Escala , Histona Acetiltransferases , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
9.
Nat Commun ; 10(1): 1436, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926792

RESUMO

In embryonic stem cells, promoters of key lineage-specific differentiation genes are found in a bivalent state, having both activating H3K4me3 and repressive H3K27me3 histone marks, making them poised for transcription upon loss of H3K27me3. Whether cancer-initiating cells (C-ICs) have similar epigenetic mechanisms that prevent lineage commitment is unknown. Here we show that colorectal C-ICs (CC-ICs) are maintained in a stem-like state through a bivalent epigenetic mechanism. Disruption of the bivalent state through inhibition of the H3K27 methyltransferase EZH2, resulted in decreased self-renewal of patient-derived C-ICs. Epigenomic analyses revealed that the promoter of Indian Hedgehog (IHH), a canonical driver of normal colonocyte differentiation, exists in a bivalent chromatin state. Inhibition of EZH2 resulted in de-repression of IHH, decreased self-renewal, and increased sensitivity to chemotherapy in vivo. Our results reveal an epigenetic block to differentiation in CC-ICs and demonstrate the potential for epigenetic differentiation therapy of a solid tumour through EZH2 inhibition.


Assuntos
Autorrenovação Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas Hedgehog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Fluoruracila/farmacologia , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Piridonas/farmacologia
10.
Nucleic Acids Res ; 47(3): 1225-1238, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462309

RESUMO

Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 µM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/química , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteína 4 de Ligação ao Retinoblastoma/química , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
J Biol Chem ; 292(51): 20947-20959, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29074623

RESUMO

UHRF1 is a key mediator of inheritance of epigenetic DNA methylation patterns during cell division and is a putative target for cancer therapy. Recent studies indicate that interdomain interactions critically influence UHRF1's chromatin-binding properties, including allosteric regulation of its histone binding. Here, using an integrative approach that combines small angle X-ray scattering, NMR spectroscopy, and molecular dynamics simulations, we characterized the dynamics of the tandem tudor domain-plant homeodomain (TTD-PHD) histone reader module, including its 20-residue interdomain linker. We found that the apo TTD-PHD module in solution comprises a dynamic ensemble of conformers, approximately half of which are compact conformations, with the linker lying in the TTD peptide-binding groove. These compact conformations are amenable to cooperative, high-affinity histone binding. In the remaining conformations, the linker position was in flux, and the reader adopted both extended and compact states. Using a small-molecule fragment screening approach, we identified a compound, 4-benzylpiperidine-1-carboximidamide, that binds to the TTD groove, competes with linker binding, and promotes open TTD-PHD conformations that are less efficient at H3K9me3 binding. Our work reveals a mechanism by which the dynamic TTD-PHD module can be allosterically targeted with small molecules to modulate its histone reader function for therapeutic or experimental purposes.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Epigênese Genética , Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Ubiquitina-Proteína Ligases , Difração de Raios X
12.
Elife ; 62017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406400

RESUMO

Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ligação Proteica
13.
J Biol Chem ; 289(17): 12177-12188, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24634223

RESUMO

PRDM9 (PR domain-containing protein 9) is a meiosis-specific protein that trimethylates H3K4 and controls the activation of recombination hot spots. It is an essential enzyme in the progression of early meiotic prophase. Disruption of the PRDM9 gene results in sterility in mice. In human, several PRDM9 SNPs have been implicated in sterility as well. Here we report on kinetic studies of H3K4 methylation by PRDM9 in vitro indicating that PRDM9 is a highly active histone methyltransferase catalyzing mono-, di-, and trimethylation of the H3K4 mark. Screening for other potential histone marks, we identified H3K36 as a second histone residue that could also be mono-, di-, and trimethylated by PRDM9 as efficiently as H3K4. Overexpression of PRDM9 in HEK293 cells also resulted in a significant increase in trimethylated H3K36 and H3K4 further confirming our in vitro observations. Our findings indicate that PRDM9 may play critical roles through H3K36 trimethylation in cells.


Assuntos
Metilação de DNA , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Calorimetria , Histonas/química , Humanos , Cinética , Espectrometria de Massas , Especificidade por Substrato
14.
PLoS One ; 8(12): e83737, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367611

RESUMO

Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.


Assuntos
Carcinogênese/genética , Domínio Catalítico , Coenzimas/metabolismo , Mutação , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteína Potenciadora do Homólogo 2 de Zeste , Ativação Enzimática , Humanos , Linfoma/genética , Linfoma/patologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexo Repressor Polycomb 2/genética , Ligação Proteica , Recidiva
15.
Nat Chem Biol ; 9(3): 184-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23292653

RESUMO

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Assuntos
Benzamidas/farmacologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Lisina/análogos & derivados , Sondas Moleculares/farmacologia , Piperidinas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Ligação Competitiva/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inibidores , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estrutura Molecular , Piperidinas/química , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
16.
J Mol Biol ; 423(5): 702-18, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22954662

RESUMO

Histone methylation has emerged as an important covalent modification involved in a variety of biological processes, especially regulation of transcription and chromatin dynamics. Lysine methylation is found in three distinct states (monomethylation, dimethylation and trimethylation), which are recognized by specific protein domains. The malignant brain tumor (MBT) domain is one such module found in several chromatin regulatory complexes including Polycomb repressive complex 1. Here, we present a comprehensive characterization of the human MBT family with emphasis on histone binding specificity. SPOT-blot peptide arrays were used to screen for the methyllysine-containing histone peptides that bind to MBT domains found in nine human proteins. Selected interactions were quantified using fluorescence polarization assays. We show that all MBT proteins recognize only monomethyllysine and/or dimethyllysine marks and provide evidence that some MBT domains recognize a defined consensus sequence while others bind in a promiscuous, non-sequence-specific manner. Furthermore, using structure-based mutants, we identify a triad of residues in the methyllysine binding pocket that imparts discrimination between monomethyllysine and dimethyllysine. This study represents a comprehensive analysis of MBT substrate specificity, establishing a foundation for the rational design of selective MBT domain inhibitors that may enable elucidation of their role in human biology and disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , Metilação de DNA , Primers do DNA , Polarização de Fluorescência , Humanos , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Ligação Proteica
17.
PLoS Genet ; 7(11): e1002360, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22125490

RESUMO

Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2(-/-) mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Proteólise , Proteínas Proto-Oncogênicas c-myc/genética , Tolerância a Radiação , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
18.
J Biol Chem ; 286(27): 24300-11, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21489993

RESUMO

Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Animais , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ilhas de CpG/fisiologia , Cristalografia por Raios X , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Heterocromatina/genética , Histonas/genética , Humanos , Camundongos , Camundongos Knockout , Ressonância Magnética Nuclear Biomolecular , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases
19.
Structure ; 19(3): 418-29, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21397192

RESUMO

IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 Å resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cristalização , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli , Humanos , Interferons/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
20.
J Biol Chem ; 286(6): 4796-808, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21084285

RESUMO

The tumor suppressor p53 maintains genome stability and prevents malignant transformation by promoting cell cycle arrest and apoptosis. Both Mdm2 and Pirh2 have been shown to ubiquitylate p53 through their RING domains, thereby targeting p53 for proteasomal degradation. Using structural and functional analyses, here we show that the Pirh2 RING domain differs from the Mdm2 RING domain in its oligomeric state, surface charge distribution, and zinc coordination scheme. Pirh2 also possesses weaker E3 ligase activity toward p53 and directs ubiquitin to different residues on p53. NMR and mutagenesis studies suggest that whereas Pirh2 and Mdm2 share a conserved E2 binding site, the seven C-terminal residues of the Mdm2 RING directly contribute to Mdm2 E3 ligase activity, a feature unique to Mdm2 and absent in the Pirh2 RING domain. This comprehensive analysis of the Pirh2 and Mdm2 RING domains provides structural and mechanistic insight into p53 regulation by its E3 ligases.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Ubiquitina-Proteína Ligases/química , Sítios de Ligação , Humanos , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Domínios RING Finger , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA