Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
2.
Cancer Pathog Ther ; 2(3): 142-154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027151

RESUMO

Micro ribonucleic acids (miRNAs) are a highly conserved class of single-stranded non-coding RNAs. Within the miR-545/374a cluster, miR-545 resides in the intron of the long non-coding RNA (lncRNA) FTX on Xq13.2. The precursor form, pre-miR-545, is cleaved to generate two mature miRNAs, miR-545-3p and miR-545-5p. Remarkably, these two miRNAs exhibit distinct aberrant expression patterns in different cancers; however, their expression in colorectal cancer remains controversial. Notably, miR-545-3p is affected by 15 circular RNAs (circRNAs) and 10 long non-coding RNAs (lncRNAs), and it targets 27 protein-coding genes (PCGs) that participate in the regulation of four signaling pathways. In contrast, miR-545-5p is regulated by one circRNA and five lncRNAs, it targets six PCGs and contributes to the regulation of one signaling pathway. Both miR-545-3p and miR-545-5p affect crucial cellular behaviors, including cell cycle, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and migration. Although low miR-545-3p expression is associated with poor prognosis in three cancer types, studies on miR-545-5p are yet to be reported. miR-545-3p operates within a diverse range of regulatory networks, thereby augmenting the efficacy of cancer chemotherapy, radiotherapy, and immunotherapy. Conversely, miR-545-5p enhances immunotherapy efficacy by inhibiting T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. In summary, miR-545 holds immense potential as a cancer biomarker and therapeutic target. The aberrant expression and regulatory mechanisms of miR-545 in cancer warrant further investigation.

3.
J Hematol Oncol ; 17(1): 55, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075488

RESUMO

Liquid biopsy, an advanced technology for analyzing body fluid samples, is gaining traction in cancer diagnostics and monitoring. Blood-based liquid biopsy, particularly focusing on cell-free DNAs (cf-DNAs), circulating tumor cells (CTCs), and extracellular vesicles (EVs), has garnered significant attention. EVs stand out for their potential in tumor diagnosis, prognosis prediction, and treatment response assessment, owing to their stable molecular cargo and clear extraction process. At the recent American Association for Cancer Research (AACR) Annual Meeting 2024, groundbreaking EVs-based liquid biopsy studies showcased promising strides in early detection and diagnosis of various cancers, including breast cancer (BC), high-grade serous ovarian cancer (HGSOC), pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), colon adenocarcinoma (COAD), head and neck cancer (HNC), neuroblastoma, and retinoblastoma (RB). Despite these advancements, challenges persist in translating EVs biomarkers into clinical practice. Overcoming these challenges promises to propel EVs-based liquid biopsy into a new era of personalized precision medicine, revolutionizing cancer detection, monitoring, and treatment.


Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , Neoplasias , Células Neoplásicas Circulantes , Humanos , Biópsia Líquida/métodos , Vesículas Extracelulares/metabolismo , Neoplasias/diagnóstico , Biomarcadores Tumorais/análise , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Medicina de Precisão/métodos
4.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063732

RESUMO

The associated effects of temperature and steel fiber content on the energy absorption properties of concrete were examined using quasi-static uniaxial compression tests of concrete materials with varied steel fiber contents (0%, 0.5%, 1%, and 1.5%) at various temperatures (20 °C, 200 °C, 400 °C, and 520 °C). The experimental findings demonstrate that steel fibers can greatly boost concrete's ability to absorb energy and that the toughness index rises with steel fiber concentration. The energy absorption capacity of concrete under high-temperature conditions also significantly decreases as temperature rises, and the energy absorption ability of steel fiber concrete under the same temperature is superior to that of plain concrete. The coupled influence factor K of temperature-steel fiber percentage characterizing the energy-absorbing ability of concrete was determined, and the coupled influence law of temperature and steel fiber content on the energy-absorbing capacity of concrete materials was summarized and analyzed on the basis of the experimental data of high-temperature compression. Equivalent equations for steel fiber reinforcing and temperature weakening effects when they are comparable (K = 1) are developed and equivalent parameters for concrete materials are given.

5.
Prog Biophys Mol Biol ; 191: 1-10, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971324

RESUMO

Transfer RNA-derived small RNAs (tsRNAs), a recently identified subclass of small non-coding RNAs (sncRNAs), emerge through the cleavage of mature transfer RNA (tRNA) or tRNA precursors mediated by specific enzymes. The tumor necrosis factor (TNF) protein, a signaling molecule produced by activated macrophages, plays a pivotal role in systemic inflammation. Its multifaceted functions include the capacity to eliminate or hinder tumor cells, enhance the phagocytic capabilities of neutrophils, confer resistance against infections, induce fever, and prompt the production of acute phase proteins. Notably, four TNF-related tsRNAs have been conclusively linked to distinct diseases. Examples include 5'tiRNA-Gly in skeletal muscle injury, tsRNA-21109 in systemic lupus erythematosus (SLE), tRF-Leu-AAG-001 in endometriosis (EMs), and tsRNA-04002 in intervertebral disk degeneration (IDD). These tsRNAs exhibit the ability to suppress the expression of TNF-α. Additionally, KEGG analysis has identified seven tsRNAs potentially involved in modulating the TNF pathway, exerting their influence across a spectrum of non-cancerous diseases. Noteworthy instances include aberrant tiRNA-Ser-TGA-001 and tRF-Val-AAC-034 in intrauterine growth restriction (IUGR), irregular tRF-Ala-AGC-052 and tRF-Ala-TGC-027 in obesity, and deviant tiRNA-His-GTG-001, tRF-Ser-GCT-113, and tRF-Gln-TTG-035 in irritable bowel syndrome with diarrhea (IBS-D). This comprehensive review explores the biological functions and mechanisms of tsRNAs associated with the TNF signaling pathway in both cancer and other diseases, offering novel insights for future translational medical research.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Animais , Fator de Necrose Tumoral alfa/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética
6.
Cancer Gene Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858534

RESUMO

RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.

7.
Cell Mol Biol Lett ; 29(1): 89, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877420

RESUMO

CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.


Assuntos
Instabilidade Genômica , RNA Circular , Instabilidade Genômica/genética , Humanos , Animais , RNA Circular/genética , RNA Circular/metabolismo , DNA/metabolismo , DNA/genética , Estruturas R-Loop/genética , RNA/metabolismo , RNA/genética , Replicação do DNA/genética
8.
J Mol Med (Berl) ; 102(8): 973-985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850298

RESUMO

The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1ß subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.


Assuntos
Pequeno RNA não Traduzido , RNA de Transferência , Transdução de Sinais , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia
9.
Mol Cancer ; 23(1): 98, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730483

RESUMO

The efficacy of Adoptive Cell Transfer Therapy (ACT) in combating hematological tumors has been well-documented, yet its application to solid tumors faces formidable hurdles, chief among them being the suboptimal therapeutic response and the immunosuppressive milieu within the tumor microenvironment (TME). Recently, Garcia, J. et al. present compelling findings shedding light on potential breakthroughs in this domain. Their investigation reveals the pronounced augmentation of anti-tumor activity in CAR T cells through the introduction of a T cell neoplasm fusion gene, CARD11-PIK3R3. The incorporation of this gene into engineered T cell therapy holds promise as a formidable tool in the arsenal of cancer immunotherapy. The innovative strategy outlined not only mitigates the requirement for high doses of CAR T cells but also enhances tumor control while exhibiting encouraging safety profiles. The exploration of the CARD11-PIK3R3 fusion gene represents an advancement in our approach to bolstering the anti-tumor efficacy of immunotherapeutic interventions. Nonetheless, the imperative for further inquiry to ascertain its transfection efficiency and long-term safety cannot be overstated. Nevertheless, this seminal investigation offers a beacon of hope in surmounting the formidable treatment impediments posed by solid tumors, paving the way for a transformative era in cancer therapeutics.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais
10.
Biomed Pharmacother ; 175: 116681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705128

RESUMO

GCN1 is a highly conserved protein present widely across eukaryotes. As an upstream activator of protein kinase GCN2, GCN1 plays a pivotal role in integrated stress responses, such as amino acid starvation and oxidative stress. Through interaction with GCN2, GCN1 facilitates the activation of GCN2, thus initiating downstream signaling cascades in response to cellular stressors. In these contexts, the activation of GCN2 necessitates the presence and action of GCN1. Notably, GCN1 also operates as a ribosome collision sensor, contributing significantly to the translation quality control pathway. These discoveries offer valuable insights into cellular responses to internal stresses, vital for maintaining cellular homeostasis. Additionally, GCN1 exhibits the ability to regulate the cell cycle and suppress inflammation, among other processes, independently of GCN2. Our review outlines the structural characteristics and biological functions of GCN1, shedding light on its significant involvement in the onset and progression of various cancer and non-cancer diseases. Our work underscores the role of GCN1 in the context of drug therapeutic effects, hinting at its potential as a promising drug target. Furthermore, our work delves deep into the functional mechanisms of GCN1, promising innovative avenues for the diagnosis and treatment of diseases in the future. The exploration of GCN1's multifaceted roles not only enhances our understanding of its mechanisms but also paves the way for novel therapeutic interventions. The ongoing quest to unveil additional functions of GCN1 holds the promise of further enriching our comprehension of its mode of action.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
11.
Front Genet ; 15: 1346852, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596214

RESUMO

tRNA-derived small RNAs (tsRNAs) are novel small non-coding RNAs originating from mature or precursor tRNAs (pre-tRNA), typically spanning 14 to 30 nt. The Mitogen-activated protein kinases (MAPK) pathway orchestrates cellular responses, influencing proliferation, differentiation, apoptosis, and transformation. tsRNAs influence the expression of the MAPK signaling pathway by targeting specific proteins within the pathway. Presently, four MAPK-linked tsRNAs have implications in gastric cancer (GC) and high-grade serous ovarian cancer (HGSOC). Notably, tRF-Glu-TTC-027 and tRF-Val-CAC-016 modulate MAPK-related protein expression, encompassing p38, Myc, ERK, CyclinD1, CyclinB, and c-Myc, hindering GC progression via MAPK pathway inhibition. Moreover, tRF-24-V29K9UV3IU and tRF-03357 remain unexplored in specific mechanisms. KEGG analysis posits varied tsRNAs in MAPK pathway modulation for diverse non-cancer maladies. Notably, high tRF-36-F900BY4D84KRIME and tRF-23-87R8WP9IY expression relates to varicose vein (VV) risk. Elevated tiRNA-Gly-GCC-001, tRF-Gly-GCC-012, tRF-Gly-GCC-013, and tRF-Gly-GCC-016 target spinal cord injury (SCI)-related brain-derived neurotrophic factor (BDNF), influencing MAPK expression. tRF-Gly-CCC-039 associates with diabetes foot sustained healing, while tRF-5014a inhibits autophagy-linked ATG5 in diabetic cardiomyopathy (DCM). Additionally, tsRNA-14783 influences keloid formation by regulating M2 macrophage polarization. Upregulation of tRF-Arg-ACG-007 and downregulation of tRF-Ser-GCT-008 are associated with diabetes. tsRNA-04002 alleviates Intervertebral disk degeneration (IDD) by targeting PRKCA. tsRNA-21109 alleviates Systemic lupus erythematosus (SLE) by inhibiting macrophage M1 polarization. The upregulated tiNA-Gly-GCC-002 and the downregulated tRF-Ala-AGC-010, tRF-Gln-CTG-005 and tRF-Leu-AAG-001 may be involved in the pathogenesis of Lupus nephritis (LN) by affecting the expression of MAPK pathway. Downregulation of tsRNA-1018, tsRNA-3045b, tsRNA-5021a and tsRNA-1020 affected the expression of MAPK pathway, thereby improving Acute lung injury (ALI). This review comprehensively dissects tsRNA roles in MAPK signaling across cancers and other diseases, illuminating a novel avenue for translational medical exploration.

12.
Hum Cell ; 37(3): 625-632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507118

RESUMO

CLLU1, a disease-specific gene associated with chronic lymphoid leukemia (CLL), is located on chromosome 12q22. Previous studies considered CLLU1 to be a non-coding RNA; however, recent research has discovered that its coding sequence region possesses the potential to encode a short peptide similar to interleukin-4. Remarkably, abnormally elevated expression of CLLU1 has only been detected in chronic lymphoid leukemia among all hematological cancers. High CLLU1 expression often indicates more malignant pathological features and an unfavorable prognosis for patients. Importantly, the expression level of CLLU1 remains unaffected by the passage of time or therapeutic interventions, thus rendering it a novel prognostic marker. This article provides a comprehensive summary of relevant research findings on CLLU1 in the context of CLL prognosis and clinical applications, aiming to guide subsequent theoretical and clinical investigations in this field.


Assuntos
Leucemia Linfocítica Crônica de Células B , RNA Longo não Codificante , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Genes Neoplásicos
13.
PLoS One ; 19(2): e0299138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408075

RESUMO

BACKGROUND: Cuproptosis is a novel copper-dependent mode of cell death that has recently been discovered. The relationship between Cuproptosis-related ncRNAs and breast cancer subtypes, however, remains to be studied. METHODS: The aim of this study was to construct a breast cancer subtype prediction model associated with Cuproptosis. This model could be used to determine the subtype of breast cancer patients. To achieve this aim, 21 Cuproptosis-related genes were obtained from published articles and correlation analysis was performed with ncRNAs differentially expressed in breast cancer. Random forest algorithms were subsequently utilized to select important ncRNAs and build breast cancer subtype prediction models. RESULTS: A total of 94 ncRNAs significantly associated with Cuproptosis were obtained and the top five essential features were chosen to build a predictive model. These five biomarkers were differentially expressed in the five breast cancer subtypes and were closely associated with immune infiltration, RNA modification, and angiogenesis. CONCLUSION: The random forest model constructed based on Cuproptosis-related ncRNAs was able to accurately predict breast cancer subtypes, providing a new direction for the study of clinical therapeutic targets.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Morte Celular , Cobre , RNA não Traduzido/genética , Apoptose
14.
Mol Cancer ; 23(1): 13, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217023

RESUMO

The tumor microenvironment (TME) is an intricate system comprised of tumor cells and the surrounding cellular and non-cellular components, exerting a pivotal influence on the initiation and progression of tumors. Exhibiting dynamic and diverse compositions as well as functional states across various tumors and patients, a profound comprehension of its specific internal interactions is indispensable for formulating efficacious anti-cancer treatment strategies. Extensive interactions among various immune cell types within the TME are well-documented, with their phenotypes and abundances closely linked to clinical prognoses. TME research is progressing towards greater complexity and precision, yet, to date, no representative TME biomarkers suitable for clinical applications have been definitively identified and validated. In a recent study, the collaborative actions of CXCL9 and SPP1 (CXCL9:SPP1) were found to collectively dictate the polarity of tumor-associated macrophages (TAMs) within the TME, exerting profound effects on tumor progression and treatment responses. The mutually exclusive expression of CXCL9:SPP1 in the TME not only governs TAM polarity but also exhibits strong correlations with immune cell profiles, antitumor factors, and patient outcomes, significantly influencing prognosis. This article consolidates the significance and prospects of CXCL9:SPP1 as a novel indicator for tumor development and prognosis, while also proposing future research directions and addressing potential challenges in this promising field.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Prognóstico , Fenótipo , Microambiente Tumoral , Quimiocina CXCL9 , Osteopontina
15.
Hum Cell ; 37(1): 167-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995050

RESUMO

LINC00941, also known as lncRNA-MUF, is an intergenic non-coding RNA located on chromosome 12p11.21. It actively participates in a complex competing endogenous RNA network, regulating the expression of microRNA and its downstream proteins. Through transcriptional and post-transcriptional regulation, LINC00941 plays a vital role in multiple signaling pathways, influencing cell behaviors such as tumor cell proliferation, epithelial-mesenchymal transition, migration, and invasion. Noteworthy is its consistently high expression in various tumor types, closely correlating with clinicopathological features and cancer prognoses. Elevated LINC00941 levels are associated with adverse clinical outcomes, including increased tumor size, extensive lymphatic metastasis, and distant metastasis, leading to poorer survival rates across different cancers. Additionally, LINC00941 and its associated genes are linked to various targeted drugs available in the market. In this comprehensive review, we systematically summarize existing studies, detailing LINC00941's differential expression, clinicopathological and prognostic implications, regulatory mechanisms, and associated therapeutic drugs. Our analysis includes relevant charts and incorporates bioinformatics analyses to verify LINC00941's differential expression in pan-cancer and explore potential transcriptional regulation patterns of downstream targets. This work not only establishes a robust data foundation but also guides future research directions. Given its potential as a significant cancer biomarker and therapeutic target, further investigation into LINC00941's differential expression and regulatory mechanisms is essential.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Metástase Linfática , Transdução de Sinais , RNA Mensageiro/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
16.
Gene ; 896: 148044, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042213

RESUMO

LncRNAs are RNA transcripts that exceed 200 nucleotides in length and do not encode proteins. LINC00319 is a type of lncRNA that is highly expressed in various cancers and is regulated by CCL18 and MYC. High levels of LINC00319 are associated with poorer prognosis and more malignant clinical features in cancer patients. LINC00319 can regulate the expression of downstream genes, including 2 protein-coding genes and 11 miRNAs. It participates in controlling three signaling pathways and various cellular behaviors. LINC00319 and its downstream genes are potential targets for cancer therapy and are associated with common cancer treatments. This article reviews the abnormal expression of LINC00319 in human cancers and related molecular mechanisms, providing clues for further diagnosis and treatment.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Regulação para Cima , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/terapia
17.
Cancer Innov ; 2(6): 448-462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125763

RESUMO

Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding transcripts that are longer than 200 nucleotides. LINC00355 is a lncRNA located on chromosome 13q21.31 and is consistently upregulated in various cancers. It regulates the expression of downstream genes at both transcriptional and posttranscriptional levels, including eight microRNAs (miR-15a-5p, miR-34b-5p, miR-424-5p, miR-1225, miR-217-5p, miR-6777-3p, miR-195, and miR-466) and three protein-coding genes (ITGA2, RAD18, and UBE3C). LINC00355 plays a role in regulating various biological processes such as cell cycle progression, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and metastasis of cancer cells. It is involved in the regulation of the Wnt/ß-catenin signaling pathway and p53 signaling pathway. Upregulation of LINC00355 has been identified as a high-risk factor in cancer patients and its increased expression is associated with poorer overall survival, recurrence-free survival, and disease-free survival. LINC00355 upregulation has been linked to several unfavorable clinical characteristics, including advanced tumor node metastasis and World Health Organization stages, reduced Karnofsky Performance Scale scores, increased tumor size, greater depth of invasion, and more extensive lymph node metastasis. LINC00355 induces chemotherapy resistance in cancer cells by regulating five downstream genes, namely HMGA2, ABCB1, ITGA2, WNT10B, and CCNE1 genes. In summary, LINC00355 is a potential oncogene with great potential as a diagnostic marker and therapeutic target for cancer.

18.
Heliyon ; 9(11): e21851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027882

RESUMO

Hepatocellular carcinoma (HCC), ranking as the seventh most prevalent cancer worldwide, poses a significant health challenge. Actinidia chinensis Planch Root extracts (acRoots), a traditional Chinese medicine, has exhibited promising inhibitory effects on the proliferation, invasion, and migration of various cancer cell types. Nevertheless, its specific impact and underlying mechanisms concerning HCC remain unclear. This research aimed to elucidate the anticancer properties and potential molecular mechanisms of acRoots in the HepG2 and LM3 cell lines. Our findings demonstrate that acRoots effectively hampers the in vitro proliferation, migration, and invasion of HCC cells. Furthermore, acRoots induces apoptosis and autophagy by impeding the AKT/mTOR signaling pathway, with its inhibitory effects on cells being restored under AKT activator induction. This study, for the first time, elucidates that acRoots can suppress HepG2 and LM3 cell proliferation by blocking the Akt/mTOR pathway, thereby activating apoptosis and autophagy. These results underscore the potential of acRoots as a promising antitumor agent for HCC.

20.
Clin Transl Med ; 13(10): e1445, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37837401

RESUMO

BACKGROUND: To date, standardizing clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY: Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSIONS: This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immune-modulatory ncRNA biomarkers as predictive tools and therapeutic targets.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Receptores de Antígenos Quiméricos , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , Biomarcadores , Autofagia/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral , Glipicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA