Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(3): 845-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098321

RESUMO

Tyrosine kinase inhibitors (TKIs), which have been developed and approved for cancer treatment in the last few years, are involved in synaptic plasticity of learning and memory. Epigenetic modifications also play crucial roles in the process of learning and memory, but its relationship with TKI-induced learning and memory impairment has not been investigated. We hypothesized that LPM4870108, an effective anti-cancer Trk inhibitor, might affect the learning and memory via epigenetic modifications. In this study, rats were orally administered with LPM4870108 (0, 1.25, 2.5, or 5.0 mg/kg) twice daily for 28 days, after which animals were subjected to a Morris water maze test. LPM4870108 exposure caused learning and memory impairments in this test in a dose-dependent manner and reduced the spine densities. Whole-genome transcriptomic analysis revealed significant differences in the patterns of hippocampal gene expression in LPM4870108-treated rats. These transcriptomic data were combined with next-generation bisulfite sequencing analysis, after which RT-PCR and pyrosequencing were conducted, revealing epigenetic alterations associated with genes (Snx8, Fgfr1, Dusp4, Vav2, and Satb2) known to regulate learning and memory. Increased mRNA and protein expression levels of hippocampal Dnmt1 and Dnmt3a were also observed in these rats. Overall, these data suggest that gene-specific alterations in patterns of DNA methylation can potentially contribute to the incidence of learning and memory deficits associated with exposure to LPM4870108.


Assuntos
Metilação de DNA , Aprendizagem em Labirinto , Transtornos da Memória , Inibidores de Proteínas Quinases , Animais , Feminino , Masculino , Ratos , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/toxicidade , Ratos Sprague-Dawley , Transcriptoma
2.
J Med Chem ; 64(14): 10286-10296, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34253025

RESUMO

The neurotrophic receptor tyrosine kinase (NTRK) genes including NTRK1, NTRK2, and NTRK3 encode the tropomyosin receptor kinase (Trk) proteins TrkA, TrkB, and TrkC, respectively. So far, two TRK inhibitors, larotrectinib sulfate (LOXO-101 sulfate) and entrectinib (NMS-E628, RXDX-101), have been approved for clinical use in 2018 and 2019, respectively. To overcome acquired resistance, next-generation Trk inhibitors such as selitrectinib (LOXO-195) and repotrectinib (TPX-0005) have been developed and exhibit effectiveness to induce remission in patients with larotrectinib treatment failure. Herein, we report the identification and optimization of a series of macrocyclic compounds as potent pan-Trk (WT and MT) inhibitors that exhibited excellent physiochemical properties and good oral pharmacokinetics. Compound 10 was identified via optimization from the aspects of chemistry and pharmacokinetic properties, which showed good activity against wild and mutant TrkA/TrkC in in vitro and in vivo studies.


Assuntos
Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Descoberta de Drogas , Compostos Macrocíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Aza/síntese química , Compostos Aza/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Ratos Sprague-Dawley , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Receptor trkB/antagonistas & inibidores , Receptor trkB/metabolismo , Receptor trkC/antagonistas & inibidores , Receptor trkC/metabolismo , Relação Estrutura-Atividade
3.
Regul Toxicol Pharmacol ; 122: 104886, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33556418

RESUMO

LPM4870108 is a tropomyosin receptor kinase (Trk) inhibitor that is currently under consideration for human clinical trials. We characterized the toxicity and toxicokinetic properties of LPM4870108 following its oral administration to rhesus monkeys (5, 10, or 20 mg/kg/day for 4 weeks with a 4-week recovery period). No evidence of LPM4870108 toxicity was observed over this study as reflected by an absence of difference in body weight, ophthalmoscopy, urinalysis, gross, or histopathology findings. No significant differences in toxicity-related outcomes were detected when comparing LPM4870108 and control groups, and no significant treatment-related changes in food consumption, electrocardiogram results, blood pressure, hematological parameters, biochemical values, organ weight, or bone marrow parameters were observed. Treatment caused dose-dependent effects of gait disturbance, impaired balance, poor coordination, and decreased grip strength in all LPM4870108-treated animals, with these effects being attributable to excessive on-target Trk receptor inhibition. After the 4-week recovery period, all these abnormal treatment-related findings had fully or partially resolved. The toxicokinetic study of monkeys revealed that the LPM4870108 exposure increased with dose. Overall, LPM4870108 exhibited a safety profile in treated monkeys, indicating that the Highest Non-Severely Toxic Dose (HNSTD) for LPM4870108 in monkeys was 20 mg/kg/day.


Assuntos
Receptor trkA/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Feminino , Macaca mulatta , Masculino , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA