RESUMO
Chemotherapy is one of the most employed strategies in clinical treatment of cancer. However, reducing medication adverse effects and improving the biological activity remains a significant issue for chemotherapy. We developed a pH and Ca2+-responsive pillar[5]arene-based supramolecular nanodrug delivery system (NDDS) WP5âEV@DOX to address the aforementioned challenges. The formation of this NDDS began with the spontaneous formation of supramolecular nanodrug carrier WP5âEV in water from PEG-modified pillar[5]arene and the bipyridilium salt derivative EV through simple host-guest interaction. Then the antitumor drug doxorubicin DOX was efficiently loaded with a high encapsulation rate of 84.6 %. Cytotoxicity results indicated that the constructed nanoplatform not only reduced DOX toxicity and side effects on normal cell (293T), but also significantly enhanced the antitumor activity on cancer cell (HepG2). Moreover, inâ vivo experiments showed that WP5âEV@DOX had a longer half-life and higher bioavailability in the blood of mice compared to the nake drug DOX, with increases to 212 % and 179 %, respectively. Therefore, WP5âEV@DOX has great potential in tumor therapy and provides a new idea for host-guest drug delivery system.
Assuntos
Cálcio , Calixarenos , Doxorrubicina , Portadores de Fármacos , Polietilenoglicóis , Doxorrubicina/química , Doxorrubicina/farmacologia , Polietilenoglicóis/química , Humanos , Animais , Camundongos , Concentração de Íons de Hidrogênio , Calixarenos/química , Portadores de Fármacos/química , Cálcio/química , Células Hep G2 , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Compostos de Amônio Quaternário/química , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Nanopartículas/químicaRESUMO
Modern nanodrug delivery technologies offer new approaches in the fight against cancer. However, due to the heterogeneity of tumors and side effects of anticancer drugs, monotherapies are less effective. Herein, we report a novel pH and light dual-responsive nanodrug delivery platform. The platform was formed by sulfonate-modified gold nanoparticles loaded with the anticancer drugs doxorubicin (DOX) and glucose oxidase (GOx) and then covered by water-soluble pillar[5]arene as a nanovalve. The nanovalve formed by the host-guest interaction between pillar[5]arene and the sulfonic acid group grafted onto the gold nanoparticle increased the drug loading capacity of the nanoplatform and enabled sustained release of the drug in a simulated weakly acidic tumor environment. The released GOx can consume intracellular glucose, namely, starvation therapy, while the generated hydrogen peroxide can further kill tumor cells, complementing DOX chemotherapy. Gold nanoparticles have good photothermal conversion ability and can enhance the drugs release rate under specific wavelengths of light irradiation. The results of inâ vitro and inâ vivo experiments showed that this novel nanodrug delivery platform has good biocompatibility and better therapeutic efficacy relative to monotherapy. This study successfully developed a combined chemo/starvation therapy strategy with good tumor suppression, providing a new approach for cancer treatment.
Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Ouro , Fototerapia , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Linhagem Celular TumoralRESUMO
Twenty novel longifolene-derived tetraline fused thiazole-amide compounds were synthesized from longifolene, a renewable natural resource. Their structures were characterized by FT-IR, NMR, ESI-MS, and elemental analysis. The inâ vitro antiproliferative activity of these compounds against SK-OV-3 ovarian cancer cell lines, MCF-7 human breast cancer cell lines, HepG2 human liver cancer cell lines, A549 human lung adenocarcinoma cell lines, and T-24 human bladder cancer cell lines was tested by MTT assay. Compounds 6a-6c displayed significant and broad-spectrum antiproliferative activity against almost the tested cancer cell lines with IC50 in the range of 7.84 to 55.88â µM, of which compound 6c exhibited excellent antiproliferative activities with 7.84â µM IC50 against SKOV-3, 13.68â µM IC50 against HepG2, 15.69â µM IC50 against A549, 19.13â µM IC50 against MCF-7, and 22.05â µM IC50 against T-24, showing better and broad-spectrum antiproliferative effect than that of the positive control 5-FU. Furthermore, the action model was analyzed by the molecular docking study. Some intriguing structure-activity relationships were found and discussed herein by DFT theoretical calculation.
Assuntos
Antineoplásicos , Sesquiterpenos , Humanos , Amidas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Tiazóis/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologiaRESUMO
Twenty-two novel longifolene-derived diphenyl ether-carboxylic acid compounds 7a-7v were synthesized from renewable biomass resources longifolene, and their structures were confirmed by FT-IR, 1H NMR, 13C NMR, and HRMS. The preliminary evaluation of in vitro antifungal activity displayed that compound 7b presented inhibition rates of 85.9%, 82.7%, 82.7%, and 81.4% against Alternaria solani, Cercospora arachidicola, Rhizoctonia solani, and Physalospora piricola, respectively, and compound 7l possessed inhibition rates of 80.7%, 80.4%, and 80.3% against R. solani, C. arachidicola, P. piricola, respectively, exhibiting excellent and broad-spectrum antifungal activities. Besides, compounds 7f and 7a showed significant antifungal activities with inhibition rates of 81.2% and 80.7% against A.solani, respectively. Meanwhile, a reasonable and effective 3D-QSAR mode (r2 = 0.996, q2 = 0.572) has been established by the CoMFA method. Furthermore, the drug-loading complexes 7b/MgAl-LDH were prepared and characterized. Their pH-responsive controlled-release behavior was investigated as well. As a result, complex 7b/MgAl-LDH-2 exhibited excellent controlled-releasing performance in the water/ethanol (10:1, v:v) and under a pH of 5.7.
Assuntos
Antifúngicos , Relação Quantitativa Estrutura-Atividade , Antifúngicos/farmacologia , Preparações de Ação Retardada , Ácidos Carboxílicos , Éter , Espectroscopia de Infravermelho com Transformada de Fourier , Etil-Éteres , Éteres Fenílicos , Relação Estrutura-AtividadeRESUMO
Drug delivery systems have good biocompatibiliy and low side effects for cancer treatment, but overcoming high efficiency of drug-loading and the drug-targeting controlled release still remains challenging. In this work, supramolecular vesicles, with pH-triggering effect, have been successfully constructed for drug delivery, which are fabricated by the complexation between a cationic pillar[5]arene (DAWP5) and a sodium dodecyl sulfonate (SDS) in aqueous solution. Drug-loading and releasing results demonstrated that anticancer drug doxorubicin (DOX) could be loaded efficiently by such cationic vesicles in neutral condition, and the drug release could be controlled in the simulated weak acid environment of tumor cells. Moreover, the vesicles had low cytotoxicity to normal human cell (L02), while the DOX-loaded vesicles could significantly enhance the cytotoxicity of free DOX for normal cell L02 and four tested tumor cells (Hela, HepG2, MGC-803 and T24). Especially for HepG2, after 24 h incubation time, IC50 of DOX-loaded vesicles was only 0.79 µM, about 23% of that of DOX (3.43 µM). These results suggested that such novel vesicles have promising potential to construct nano-drug delivery systems for various biomedical applications.
RESUMO
A series of novel menthone derivatives bearing pyrimidine and urea moieties was designed and synthesized to explore more potent natural product-derived antitumor agents. The structures of the target compounds were confirmed by FTIR, NMR, and HRMS. The in vitro antitumor activity was tested by standard methyl thiazolytetrazolium assay and showed that 4i, 4g, 4s, and 4m are the best compounds with IC50 values of 6.04 ± 0.62µM, 3.21 ± 0.67µM, 19.09 ± 0.49µM, and 18.68 ± 1.53µM, against Hela, MGC-803, MCF-7, and A549, respectively. The results of the preliminary action mechanism studies showed that compound 4i, the representative compound, could induce cell apoptosis in Hela cells in a dose-dependent manner and might arrest the cell cycle in the G2/M phase. Furthermore, the results of network pharmacology prediction and Western blot experiments indicated that compound 4i might inhibit Hela cells through inhibit PI3K/Akt/mTOR signaling pathway. The binding modes and the binding sites interactions between compound 4i and the target proteins were predicted preliminarily by the molecular docking method.
RESUMO
Seventeen novel 2-(5-amino-1-(substituted sulfonyl)-1H-1,2,4-triazol-3-ylthio)-6- isopropyl-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one compounds were synthesized from the abundant and naturally renewable longifolene and their structures were confirmed by FT-IR, NMR, and ESI-MS. The in vitro cytotoxicity of the synthesized compounds was evaluated by standard MTT assay against five human cancer cell lines, i.e., T-24, MCF-7, HepG2, A549, and HT-29. As a result, compounds 6d, 6g, and 6h exhibited better and more broad-spectrum anticancer activity against almost all the tested cancer cell lines than that of the positive control, 5-FU. Some intriguing structure-activity relationships were found and are discussed herein by theoretical calculation.
Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Sesquiterpenos/farmacologia , Tetralonas/farmacologia , Células Hep G2 , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Neoplasias/patologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Tetralonas/síntese química , Tetralonas/química , Triazóis/síntese química , Triazóis/químicaRESUMO
To discover novel potent cytotoxic diterpenoids, a series of hybrids of dehydroabietic acid containing 1,2,3-triazole moiety were designed and synthesized. The target compounds were characterized by means of FT-IR, 1H NMR, 13C NMR, ESI-MS and elemental analysis techniques. The in vitro cytotoxicity of these compounds was evaluated by standard MTT (methyl thiazolytetrazolium) assay against CNE-2 (nasopharynx), HepG2 (liver), HeLa (epithelial cervical), BEL-7402 (liver) human carcinoma cell lines and human normal liver cell (HL-7702). The screening results revealed that most of the hybrids showed significantly improved cytotoxicity over parent compound DHAA. Among them, [1-(3-fluorobenzyl)-1H-1,2,3-triazole-4-yl]dehydroabietic acid methyl ester (3c), and [1-(2-nitrobenzyl)-1H-1,2,3-triazole-4-yl]dehydroabietic acid methyl ester (3k) displayed better antiproliferative activity with IC50 (50% inhibitory concentration) values of 5.90 ± 0.41 and 6.25 ± 0.37 µM toward HepG2 cells compared to cisplatin, while they exhibited lower cytotoxicity against HL-7702. Therefore, the 1,2,3-triazole-hybrids could be a promising strategy for the synthesis of antitumor diterpenoids and it also proved the essential role of 1,2,3-triazole moiety of DHAA in the biological activity.
Assuntos
Abietanos/química , Abietanos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Triazóis/química , Abietanos/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Microporous organic polymers (MOPs) are promising materials for gas sorption because of their intrinsic and permanent porosity, designable framework, and low density. The introduction of nitrogen-rich building block in MOPs will greatly enhance the gas sorption capacity. Here, we report the synthesis of MOPs from the 2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine unit and aromatic azides linkers by click polymerization reaction. Fourier transform infrared (FTIR) and solid-state 13C CP-MAS (Cross Polarization-Magic Angle Spinning) NMR confirm the formation of the polymers. CMOP-1 and CMOP-2 exhibit microporous networks with a BET (Brunauerâ»Emmettâ»Teller) surface area of 431 m²·g-1 and 406 m²·g-1 and a narrow pore size distribution under 1.2 nm. Gas sorption isotherms including CO2 and H2 were measured. CMOP-1 stores a superior CO2 level of 1.85 mmol·g-1 at 273 K/1.0 bar, and an H2 uptake of up to 2.94 mmol·g-1 at 77 K/1.0 bar, while CMOP-2, with its smaller surface area, shows a lower CO2 adsorption capacity of 1.64 mmol·g-1 and an H2 uptake of 2.48 mmol·g-1. In addition, I2 vapor adsorption was tested at 353 K. CMOP-1 shows a higher gravimetric load of 160 wt%. Despite the moderate surface area, the CMOPs display excellent sorption ability for CO2 and I2 due to the nitrogen-rich content in the polymers.
Assuntos
Dióxido de Carbono/química , Química Click/métodos , Nitrogênio/química , Polímeros/química , Polímeros/síntese química , AdsorçãoRESUMO
In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of dehydroabietic acid (DHA) derivatives bearing an acylhydrazone moiety were designed and synthesized by the condensation between dehydroabietic acylhydrazide (3) and a variety of substituted arylaldehydes. The inhibitory activities of these compounds against CNE-2 (nasopharynx), HepG2 (liver), HeLa (epithelial cervical), and BEL-7402 (liver) human carcinoma cell lines were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in vitro. The screening results revealed that many of the compounds showed moderate to high levels of anticancer activities against the tested cancer cell lines and some displayed similar potent inhibitory activities to the commercial anticancer drug cisplatin, while they exhibited lower cytotoxicity against normal human liver cell (HL-7702). Particularly, compound 4w, N'-(3,5-difluorobenzylidene)-2-(dehydroabietyloxy)acetohydrazide, with an IC50 (50% inhibitory concentration) value of 2.21 µM against HeLa cell, was about 17-fold more active than that of the parent compound, and showed remarkable cytotoxicity with an IC50 value of 14.46 µM against BEL-7402 cell. These results provide an encouraging framework that could lead to the development of potent novel anticancer agents.