Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 222, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658376

RESUMO

BACKGROUND: FAT4 (FAT Atypical Cadherin 4) is a member of the cadherin-associated protein family, which has been shown to function as a tumor suppressor by inhibiting proliferation and metastasis. The Wnt/ß-catenin pathway activation is highly associated with PD-L1-associated tumor immune escape. Here, we report the mechanism by which FAT4 overexpression regulates anti-tumor immunity in cervical cancer by inhibiting PD-L1 N-glycosylation and cell membrane localization in a ß-catenin-dependent manner. METHODS: FAT4 expression was first detected in cervical cancer tissues and cell lines. Cell proliferation, clone formation, and immunofluorescence were used to determine the tumor suppressive impact of FAT4 overexpression in vitro, and the findings were confirmed in immunodeficient and immunocomplete mice xenografts. Through functional and mechanistic experiments in vivo and in vitro, we investigated how FAT4 overexpression affects the antitumor immunity via the ß-catenin/STT3/PD-L1 axis. RESULTS: FAT4 is downregulated in cervical cancer tissues and cell lines. We determined that FAT4 binds to ß-catenin and antagonizes its nuclear localization, promotes phosphorylation and degradation of ß-catenin by the degradation complexes (AXIN1, APC, GSK3ß, CK1). FAT4 overexpression decreases programmed death-ligand 1 (PD-L1) mRNA expression at the transcriptional level, and causes aberrant glycosylation of PD-L1 via STT3A at the post-translational modifications (PTMs) level, leading to its endoplasmic reticulum (ER) accumulation and polyubiquitination-dependent degradation. We found that FAT4 overexpression promotes aberrant PD-L1 glycosylation and degradation in a ß-catenin-dependent manner, thereby increasing cytotoxic T lymphocyte (CTL) activity in immunoreactive mouse models. CONCLUSIONS: These findings address the basis of Wnt/ß-catenin pathway activation in cervical cancer and provide combination immunotherapy options for targeting the FAT4/ß-catenin/STT3/PD-L1 axis. Schematic cartoons showing the antitumor immunity mechanism of FAT4. (left) when Wnts bind to their receptors, which are made up of Frizzled proteins and LRP5/6, the cytoplasmic protein DVL is activated, inducing the aggregation of degradation complexes (AXIN, GSK3ß, CK1, APC) to the receptor. Subsequently, stable ß-catenin translocates into the nucleus and binds to TCF/LEF and TCF7L2 transcription factors, leading to target genes transcription. The catalytically active subunit of oligosaccharyltransferase, STT3A, enhances PD-L1 glycosylation, and N-glycosylated PD-L1 translocates to the cell membrane via the ER-to-Golgi pathway, resulting in immune evasion. (Right) FAT4 exerts antitumor immunity mainly through following mechanisms: (i) FAT4 binds to ß-catenin and antagonizes its nuclear localization, promotes phosphorylation and degradation of ß-catenin by the degradation complexes (AXIN1, APC, GSK3ß, CK1); (ii) FAT4 inhibits PD-L1 and STT3A transcription in a ß-catenin-dependent manner and induces aberrant PD-L1 glycosylation and ubiquitination-dependent degradation; (iii) Promotes activation of cytotoxic T lymphocytes (CTL) and infiltration into the tumor microenvironment.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo do Útero , beta Catenina , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/genética , beta Catenina/metabolismo , Caderinas , Glicogênio Sintase Quinase 3 beta/genética , Microambiente Tumoral , Proteínas Supressoras de Tumor , Neoplasias do Colo do Útero/genética
2.
J Control Release ; 363: 721-732, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741462

RESUMO

The spine is the most common site of bone metastases, as 20%-40% of cancer patients suffer from spinal metastases. Treatments for spinal metastases are scarce and palliative, primarily aiming at relieving bone pain and preserving neurological function. The bioactive agents-mediated therapies are the most effective modalities for treating spinal metastases because they achieve systematic and specific tumor regression. However, the clinical applications of some bioactive agents are limited due to the lack of targeting capabilities, severe side effects, and vulnerability of drug resistance. Fortunately, advanced biomaterials have been developed as excipients to enhance these treatments, including chemotherapy, phototherapy, magnetic hyperthermia therapy, and combination therapy, by improving tumor targeting and enabling sustaining and stimuli-responsive release of various therapeutic agents. Herein, the review summarizes the development of biomaterials-mediated bioactive agents for enhanced treatments of spinal metastases and predicts future research trends.


Assuntos
Neoplasias da Coluna Vertebral , Humanos , Neoplasias da Coluna Vertebral/tratamento farmacológico , Neoplasias da Coluna Vertebral/secundário , Materiais Biocompatíveis/uso terapêutico , Fototerapia
3.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35674692

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal pathogen of the ongoing global pandemic of coronavirus disease 2019 (COVID-19). Loss of smell and taste are symptoms of COVID-19, and may be related to cilia dysfunction. Here, we found that the SARS-CoV-2 ORF10 increases the overall E3 ligase activity of the CUL2ZYG11B complex by interacting with ZYG11B. Enhanced CUL2ZYG11B activity by ORF10 causes increased ubiquitination and subsequent proteasome-mediated degradation of an intraflagellar transport (IFT) complex B protein, IFT46, thereby impairing both cilia biogenesis and maintenance. Further, we show that exposure of the respiratory tract of hACE2 mice to SARS-CoV-2 or SARS-CoV-2 ORF10 alone results in cilia-dysfunction-related phenotypes, and the ORF10 expression in primary human nasal epithelial cells (HNECs) also caused a rapid loss of the ciliary layer. Our study demonstrates how SARS-CoV-2 ORF10 hijacks CUL2ZYG11B to eliminate IFT46 and leads to cilia dysfunction, thereby offering a powerful etiopathological explanation for how SARS-CoV-2 causes multiple cilia-dysfunction-related symptoms specific to COVID-19.


Assuntos
Cílios , SARS-CoV-2 , Ubiquitina-Proteína Ligases , Animais , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Camundongos , SARS-CoV-2/patogenicidade , Olfato , Ubiquitina-Proteína Ligases/metabolismo
4.
Front Genet ; 13: 1093549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685972

RESUMO

Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.

6.
Aging Cell ; 20(5): e13353, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780118

RESUMO

MicroRNAs (miRNAs) regulate gene expression and thereby influence cell development and function. Numerous studies have shown the significant roles of miRNAs in regulating immune cells including natural killer (NK) cells. However, little is known about the role of miRNAs in NK cells with aging. We previously demonstrated that the aged C57BL/6 mice have significantly decreased proportion of mature (CD27- CD11b+ ) NK cells compared with young mice, indicating impaired maturation of NK cells with aging. Here, we performed deep sequencing of CD27+ NK cells from young and aged mice. Profiling of the miRNome (global miRNA expression levels) revealed that 49 miRNAs displayed a twofold or greater difference in expression between young and aged NK cells. Among these, 30 miRNAs were upregulated and 19 miRNAs were downregulated in the aged NK cells. We found that the expression level of miR-l8la-5p was increased with the maturation of NK cells, and significantly decreased in NK cells from the aged mice. Knockdown of miR-181a-5p inhibited NK cell development in vitro and in vivo. Furthermore, miR-181a-5p is highly conserved in mice and human. MiR-181a-5p promoted the production of IFN-γ and cytotoxicity in stimulated NK cells from both mice and human. Importantly, miR-181a-5p level markedly decreased in NK cells from PBMC of elderly people. Thus, our results demonstrated that the miRNAs profiles in NK cells change with aging, the decreased level of miR-181a-5p contributes to the defective NK cell development and function with aging. This opens new strategies to preserve or restore NK cell function in the elderly.


Assuntos
Envelhecimento/genética , Envelhecimento/imunologia , Células Matadoras Naturais/imunologia , MicroRNAs/metabolismo , Animais , Células Cultivadas , Citotoxicidade Imunológica , Regulação da Expressão Gênica , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Sci Rep ; 7(1): 17402, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234109

RESUMO

Interleukin (IL)-17-producing T helper (Th17) cells are crucial for host defense against extracellular microbes and pathogenesis of autoimmune diseases. Here we show that the AP-1 transcription factor JunB is required for Th17 cell development. Junb-deficient CD4+ T cells are able to develop in vitro into various helper T subsets except Th17. The RNA-seq transcriptome analysis reveals that JunB is crucial for the Th17-specific gene expression program. Junb-deficient mice are completely resistant to experimental autoimmune encephalomyelitis, a Th17-mediated inflammatory disease, and naive T helper cells from such mice fail to differentiate into Th17 cells. JunB appears to activate Th17 signature genes by forming a heterodimer with BATF, another AP-1 factor essential for Th17 differentiation. The mechanism whereby JunB controls Th17 cell development likely involves activation of the genes for the Th17 lineage-specifying orphan receptors RORγt and RORα and reduced expression of Foxp3, a transcription factor known to antagonize RORγt function.


Assuntos
Diferenciação Celular/fisiologia , Células Th17/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Psoríase/metabolismo , Psoríase/patologia , Fatores de Transcrição/genética
8.
Nat Commun ; 6: 8820, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26531897

RESUMO

The thymus has spatially distinct microenvironments, the cortex and the medulla, where the developing T-cells are selected to mature or die through the interaction with thymic stromal cells. To establish the immunological self in the thymus, medullary thymic epithelial cells (mTECs) express diverse sets of tissue-specific self-antigens (TSAs). This ectopic expression of TSAs largely depends on the transcriptional regulator Aire, yet the mechanism controlling Aire expression itself remains unknown. Here, we show that Jmjd6, a dioxygenase that catalyses lysyl hydroxylation of splicing regulatory proteins, is critical for Aire expression. Although Jmjd6 deficiency does not affect abundance of Aire transcript, the intron 2 of Aire gene is not effectively spliced out in the absence of Jmjd6, resulting in marked reduction of mature Aire protein in mTECs and spontaneous development of multi-organ autoimmunity in mice. These results highlight the importance of intronic regulation in controlling Aire protein expression.


Assuntos
Autoimunidade/genética , Regulação da Expressão Gênica , Splicing de RNA/genética , Receptores de Superfície Celular/genética , Tolerância a Antígenos Próprios/genética , Timo/imunologia , Fatores de Transcrição/genética , Animais , Autoimunidade/imunologia , Southern Blotting , Células Epiteliais , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Humanos , Immunoblotting , Íntrons/genética , Camundongos , Camundongos Knockout , Camundongos Nus , Técnicas de Cultura de Órgãos , Splicing de RNA/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância a Antígenos Próprios/imunologia , Análise de Sequência de RNA , Timo/transplante , Fatores de Transcrição/imunologia , Proteína AIRE
9.
J Gen Virol ; 96(11): 3223-3235, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26346306

RESUMO

NK-cells have traditionally been viewed as innate effector lymphocytes that serve as a first line of defence against a range of viruses and tumours. More recently, the importance of NK-cell immunoregulatory functions has been highlighted. NK-cells can inhibit antiviral T-cell responses, and also play an important role in controlling harmful T-cell activity in autoimmunity and transplantation settings. Moreover, immunopathological effects of NK-cells during infection have been reported. Nevertheless, the phenotype and function of NK-cells in the thymus during influenza virus infection is not understood. In the present study, we demonstrated that influenza A virus (IAV) infection in mice led to severe thymic atrophy caused by increased thymic T-cell apoptosis and suppressed proliferation. We found that NK-cells played a critical role in this phenotype. IFN-c production by NK-cells was a contributing factor for thymic atrophy during IAV infection. Taken together, our data indicate that NK-cells are involved in the thymic atrophy associated with IAV infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Células Matadoras Naturais/imunologia , Timo/imunologia , Animais , Atrofia/imunologia , Atrofia/virologia , Feminino , Humanos , Influenza Humana/imunologia , Influenza Humana/patologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Timo/patologia
10.
J Exp Med ; 211(7): 1407-19, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24913231

RESUMO

Mast cells play a key role in the induction of anaphylaxis, a life-threatening IgE-dependent allergic reaction, by secreting chemical mediators that are stored in secretory granules. Degranulation of mast cells is triggered by aggregation of the high-affinity IgE receptor, FcεRI, and involves dynamic rearrangement of microtubules. Although much is known about proximal signals downstream of FcεRI, the distal signaling events controlling microtubule dynamics remain elusive. Here we report that DOCK5, an atypical guanine nucleotide exchange factor (GEF) for Rac, is essential for mast cell degranulation. As such, we found that DOCK5-deficient mice exhibit resistance to systemic and cutaneous anaphylaxis. The Rac GEF activity of DOCK5 is surprisingly not required for mast cell degranulation. Instead, DOCK5 associated with Nck2 and Akt to regulate microtubule dynamics through phosphorylation and inactivation of GSK3ß. When DOCK5-Nck2-Akt interactions were disrupted, microtubule formation and degranulation response were severely impaired. Our results thus identify DOCK5 as a key signaling adaptor that orchestrates remodeling of the microtubule network essential for mast cell degranulation.


Assuntos
Degranulação Celular/imunologia , Fatores de Troca do Nucleotídeo Guanina/imunologia , Mastócitos/imunologia , Microtúbulos/imunologia , Receptores de IgE/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Degranulação Celular/genética , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Mastócitos/citologia , Camundongos , Camundongos Knockout , Microtúbulos/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de IgE/genética , Transdução de Sinais/genética
11.
Blood ; 122(3): 386-93, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23719299

RESUMO

Natural killer (NK) cells play an important role in protective immunity against viral infection and tumor progression, but they also contribute to rejection of bone marrow grafts via contact-dependent cytotoxicity. Ligation of activating NK receptors with their ligands expressed on target cells induces receptor clustering and actin reorganization at the interface and triggers polarized movement of lytic granules to the contact site. Although activation of the small GTPase Rac has been implicated in NK cell-mediated cytotoxicity, its precise role and the upstream regulator remain elusive. Here, we show that DOCK2, an atypical guanine nucleotide exchange factor for Rac, plays a key role in NK cell-mediated cytotoxicity. We found that although DOCK2 deficiency in NK cells did not affect conjugate formation with target cells, DOCK2-deficienct NK cells failed to effectively kill leukemia cells in vitro and major histocompatibility complex class I-deficient bone marrow cells in vivo, regardless of the sorts of activating receptors. In DOCK2-deficient NK cells, NKG2D-mediated Rac activation was almost completely lost, resulting in a severe defect in the lytic synapse formation. Similar results were obtained when the Rac guanine nucleotide exchange factor activity of DOCK2 was selectively abrogated. These results indicate that DOCK2-Rac axis controls NK cell-mediated cytotoxicity through the lytic synapse formation.


Assuntos
Citotoxicidade Imunológica , Proteínas Ativadoras de GTPase/metabolismo , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Transplante de Medula Óssea , Membrana Celular/metabolismo , Citocinas/biossíntese , Ativação Enzimática , Proteínas Ativadoras de GTPase/deficiência , Fatores de Troca do Nucleotídeo Guanina , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
12.
PLoS One ; 8(3): e59633, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527234

RESUMO

General cellular functions of proteasomes occur through protein degradation, whereas the specific function of immunoproteasomes is the optimization of antigen processing associated with MHC class I. We and others previously reported that deficiency in subunits of immunoproteasomes impaired the activation of antigen-specific CD8(+) T cells, resulting in higher susceptibility to tumor and infections. We demonstrated that CD8(+) T cells contributed to protection against malaria parasites. In this study, we evaluated the role of immunoproteasomes in the course of infection with rodent malaria parasites. Unexpectedly, Plasmodium yoelii infection of mice deficient in LMP7, a catalytic subunit of immunoproteasomes, showed lower parasite growth in the early phase of infection and lower lethality compared with control mice. The protective characteristics of LMP7-deficient mice were not associated with enhanced immune responses, as the mutant mice showed comparable or diminished activation of innate and acquired immunity. The remarkable difference was observed in erythrocytes instead of immune responses. Parasitized red blood cells (pRBCs) purified from LMP7-deficient mice were more susceptible to phagocytosis by macrophages compared with those from wild-type mice. The susceptibility of pRBC to phagocytosis appeared to correlate with deformity of the membrane structures that were only observed after infection. Our results suggest that RBCs of LMP7-deficient mice were more likely to deform in response to infection with malaria parasites, presumably resulting in higher susceptibility to phagocytosis and in the partial resistance to malaria.


Assuntos
Resistência à Doença/fisiologia , Eritrócitos/parasitologia , Malária/fisiopatologia , Fagocitose/fisiologia , Plasmodium yoelii , Complexo de Endopeptidases do Proteassoma/fisiologia , Animais , Primers do DNA/genética , Eritrócitos/ultraestrutura , Citometria de Fluxo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Complexo de Endopeptidases do Proteassoma/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
J Immunol ; 189(4): 1618-26, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802414

RESUMO

Aquaporin-1 (AQP-1) is a water channel protein highly expressed in the vascular endothelial cells of proliferating tissues including malignant cancers. Given that in APC ubiquitinated peptides are effectively introduced into proteasomes from which CD8 epitopes are excised, we fused ubiquitin with AQP-1 (pUB-AQP-1) to produce a DNA vaccine. In C57BL/6J mice immunized with pUB-AQP-1, the growth of B16F10 melanoma was profoundly inhibited. The antitumor effect of the pUB-AQP-1 DNA vaccine was largely mediated by CD8 T cells, which secrete IFN-γ, perforin, and granzyme-B in the presence of APCs transfected with pUB-AQP-1. AQP-1-specific CD8 T cells possessed cytotoxic activity both in vivo and in vitro. After tumor challenge, the microvessel density decreased and the ratio of total blood vessel area to tumor area was significantly reduced as compared with control mice, resulting in a dramatic suppression of tumor growth. The immunization effect was completely abrogated in immunoproteasome-deficient mice. Strikingly this pUB-AQP-1 DNA vaccine was also effective against Colon 26 colon tumors (BALB/c) and MBT/2 bladder tumors (C3H/HeN). Thus, this ubiquitin-conjugated DNA immunization-targeting tumor vasculature is a valid and promising antitumor therapy. This vaccine works across the barriers of tumor species and MHC class I differences in host mice.


Assuntos
Aquaporina 1/imunologia , Vacinas Anticâncer/farmacologia , Neoplasias Experimentais/terapia , Linfócitos T Citotóxicos/imunologia , Vacinas de DNA/farmacologia , Animais , Western Blotting , Vacinas Anticâncer/imunologia , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/imunologia , Neovascularização Patológica/terapia , Complexo de Endopeptidases do Proteassoma/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ubiquitina/imunologia , Vacinas de DNA/imunologia
14.
Chem Biol ; 19(4): 488-97, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22520755

RESUMO

Tissue infiltration of activated lymphocytes is a hallmark of transplant rejection and organ-specific autoimmune diseases. Migration and activation of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain Dbl homology domain typically found in guanine nucleotide exchange factors, DOCK2 mediates the GTP-GDP exchange reaction for Rac through its DHR-2 domain. Here, we have identified 4-[3'-(2″-chlorophenyl)-2'-propen-1'-ylidene]-1-phenyl-3,5-pyrazolidinedione (CPYPP) as a small-molecule inhibitor of DOCK2. CPYPP bound to DOCK2 DHR-2 domain in a reversible manner and inhibited its catalytic activity in vitro. When lymphocytes were treated with CPYPP, both chemokine receptor- and antigen receptor-mediated Rac activation were blocked, resulting in marked reduction of chemotactic response and T cell activation. These results provide a rational of and a chemical scaffold for development of the DOCK2-targeting immunosuppressant.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Pirazóis/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas rac de Ligação ao GTP/metabolismo , Movimento Celular/efeitos dos fármacos , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Estrutura Terciária de Proteína , Pirazóis/farmacologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Eur J Immunol ; 40(4): 1053-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20101613

RESUMO

When developing malaria vaccines, the most crucial step is to elucidate the mechanisms involved in protective immunity against the parasites. We found that CD8(+) T cells contribute to protective immunity against infection with blood-stage parasites of Plasmodium yoelii. Infection of C57BL/6 mice with P. yoelii 17XL was lethal, while all mice infected with a low-virulence strain of the parasite 17XNL acquired complete resistance against re-infection with P. yoelii 17XL. However, the host mice transferred with CD8(+) T cells from mice primed only with P. yoelii 17XNL failed to acquire protective immunity. On the other hand, the irradiated host mice were completely resistant to P. yoelii 17XL infection, showing no grade of parasitemia when adoptively transferred with CD8(+) T cells from immune mice that survived infection with both P. yoelii XNL and, subsequently, P. yoelii 17XL. These protective CD8(+) T cells from immune WT mice had the potential to generate IFN-gamma, perforin (PFN) and granzyme B. When mice deficient in IFN-gamma were used as donor mice for CD8(+) T cells, protective immunity in the host mice was fully abrogated, and the immunity was profoundly attenuated in PFN-deficient mice. Thus, CD8(+) T cells producing IFN-gamma and PFN appear to be involved in protective immunity against infection with blood-stage malaria.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Malária/imunologia , Parasitemia/imunologia , Plasmodium yoelii/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Convalescença , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Granzimas/biossíntese , Interferon gama/biossíntese , Interferon gama/deficiência , Interferon gama/genética , Macrófagos/imunologia , Malária/prevenção & controle , Vacinas Antimaláricas/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/prevenção & controle , Plasmodium yoelii/patogenicidade , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Proteínas Citotóxicas Formadoras de Poros/deficiência , Proteínas Citotóxicas Formadoras de Poros/genética , Quimera por Radiação , Virulência
16.
Biochem Biophys Res Commun ; 392(3): 277-82, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20059980

RESUMO

Cytotoxic CD8(+) T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8(+) T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8(+) T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4(+) T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8(+) T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/prevenção & controle , Neuraminidase/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Vacinas de DNA/imunologia , Sequência de Aminoácidos , Animais , Antígenos/imunologia , Antígenos/metabolismo , Doença de Chagas/imunologia , Cisteína Endopeptidases/genética , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Vacinas Protozoárias/genética , Vacinas Protozoárias/metabolismo , Ubiquitina/metabolismo , Vacinação , Vacinas de DNA/genética , Vacinas de DNA/metabolismo
17.
Eur J Immunol ; 39(12): 3385-94, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19830724

RESUMO

Proteasome-mediated proteolysis is responsible for the generation of immunogenic epitopes presented by MHC class I molecules, which activate antigen-specific CD8+ T cells. Immunoproteasomes, defined by the presence of the three catalytic subunits LMP2, MECL-1, and LMP7, have been hypothesized to optimize MHC class I antigen processing. In this study, we demonstrate that the infection of mice with a protozoan parasite, Toxoplasma gondii, induced the expression of LMP7 mRNA in APC and increased the capacity of APC to induce the production of IFN-gamma by antigen-specific CD8+ T cells. In vitro infection of a DC cell line with T. gondii also induced the expression of LMP7 and resulted in enhanced proteasome proteolytic activity. Finally, mice lacking LMP7 were highly susceptible to infection with T. gondii and showed a reduced number of functional CD8+ T cells. These results demonstrate that proteasomes containing LMP7 play an indispensable role in the survival of mice infected with T. gondii, presumably due to the efficient generation of CTL epitopes required for the functional development of CD8+ T cells.


Assuntos
Complexos Multienzimáticos/genética , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/parasitologia , Células Cultivadas , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Indução Enzimática , Expressão Gênica , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/biossíntese , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia
18.
Microbes Infect ; 10(3): 241-50, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18321749

RESUMO

Acquired immunity against infection with Trypanosoma cruzi is dependent on CD8(+)T cells. Here, to develop a vaccine strategy taking advantage of activated CD8(+)T cells, we constructed a DNA vaccine, designated pGFP-TSA1, encoding a fusion protein linking GFP to a single CTL epitope of TSA1, a leading candidate for vaccine against T. cruzi. C57BL/6 mice vaccinated with this plasmid showed suppressed parasitemia and prolonged survival. Vaccination with pGFP-TSA1 enhanced epitope-specific cytotoxicity and IFN-gamma secretion by CD8(+)T cells. Furthermore, the depletion of CD8(+)T cells prior to challenge infection with T. cruzi completely abolished this protection, indicating that CD8(+)T cells are the principal effector T cells involved. When mice deficient in the proteasome activator PA28alpha/beta or the immunoproteasome subunits LMP2 and LMP7 were used, the protective immunity against infection was profoundly attenuated. Our findings clearly demonstrate that vaccination with pGFP-TSA1 successfully induces protection dependent on CD8(+)T cell activation, in which immunoproteasomes play a crucial role. It is noteworthy to document that physical binding of the epitope and GFP is required for induction of this protection, since mice vaccinated with pTSA1-IRES-GFP failed to acquire resistance, probably because the epitope and GFP are separately expressed in the antigen-presenting cells.


Assuntos
Doença de Chagas/prevenção & controle , Cisteína Endopeptidases/imunologia , Vacinas Protozoárias/administração & dosagem , Trypanosoma cruzi/imunologia , Vacinação , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Esquemas de Imunização , Injeções Intradérmicas , Interferon gama/biossíntese , Ativação Linfocitária , Complexo Principal de Histocompatibilidade/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/imunologia , Plasmídeos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Subpopulações de Linfócitos T , Linfócitos T Citotóxicos , Vacinas de DNA/administração & dosagem
19.
Biochem Biophys Res Commun ; 365(4): 758-63, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18029260

RESUMO

We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8(+) T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valine or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8(+) T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8(+) T cells.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Ubiquitina/genética , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Camundongos , Proteínas Recombinantes de Fusão/metabolismo
20.
Int Immunol ; 18(5): 679-87, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16569681

RESUMO

MUT1 is an H-2Kb-restricted 8-mer CTL epitope expressed in Lewis lung carcinoma (3LL) tumor cells derived from C57BL/6 (B6) mice. We constructed a chimeric gene encoding ubiquitin-fused MUT1 (pUB-MUT1). By using a gene gun, B6 mice were immunized with the gene prior to challenge with 3LL tumor cells. Tumor growth and lung metastasis were prominently suppressed in mice immunized with pUB-MUT1 but only slightly in those immunized with the MUT1 gene (pMUT) alone. CD8+ T cells were confirmed to be the final effector by in vitro experiments and in vivo removal of the cells with a corresponding antibody. Anti-tumor immunity was profoundly suppressed in mice deficient in an immuno-subunit of proteasome, LMP7. Furthermore, mice deficient in a proteasome regulator, PA28alpha/beta, failed to acquire protective immunity. Thus, application of the ubiquitin-fusion degradation pathway was useful even in immunization with genes encoding a single CTL epitope for induction of specific and active CD8+ T cells.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Epitopos de Linfócito T/imunologia , Oligopeptídeos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T Citotóxicos/imunologia , Ubiquitina/imunologia , Animais , Apresentação de Antígeno/imunologia , Biolística , Células COS , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/prevenção & controle , Chlorocebus aethiops , Epitopos de Linfócito T/biossíntese , Feminino , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/imunologia , Oligopeptídeos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/imunologia , Proteínas/metabolismo , Linfócitos T Citotóxicos/enzimologia , Linfócitos T Citotóxicos/metabolismo , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA