Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39061911

RESUMO

Ascorbate peroxidases (APXs) are key components of the ascorbate-glytathione cycle, which plays an important role in removing excess reactive oxygen species (ROS) in plants. Herein, MaAPX1 was verified as being involved in the ripening and senescence of banana fruit, exhibiting responsiveness to the accumulation of ROS and the oxidation of proteins. Site-directed mutation was applied to explore the mechanism of MaAPX1 activity changes. We found that the 32-site cysteine (Cys, C) served as a potential S-nitrosylation site. The mutant MaAPX1C32S activity was decreased significantly when Cys32 was mutated to serine (Ser, S). Intriguingly, the neighboring conserved 36-site methionine (Met, M), which is adjacent to Cys32, displayed an enzyme activity that was approximately five times higher than that of the wild-type MaAPX1 when mutated to lysine (Lys, K). Utilizing LC-MS/MS spectroscopy coupled with stopped-flow analysis showed that the enhanced MaAPX1M36K activity might be due to the increased S-nitrosylation level of Cys32 and the promotion of intermediate (compound I, the first intermediate product of the reaction of APX with H2O2) production. Molecular docking simulations showed that the S-N bond between Cys32 and Lys36 in MaAPX1M36K might have a function in protecting the thiol of Cys32 from oxidation. MaAPX1M36K, a promising mutant, possesses immense potential for improving the antioxidant capabilities of APX in the realm of bioengineering technology research.

2.
Foods ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540832

RESUMO

Fruit ripening is controlled by internal factors such as hormones and genetic regulators, as well as external environmental factors. However, the impact of redox regulation on fruit ripening remains elusive. Here, we explored the effects of L-cysteine hydrochloride (LCH), an antioxidant, on tomato fruit ripening and elucidated the underlying mechanism. The application of LCH effectively delayed tomato fruit ripening, leading to the suppression of carotenoid and lycopene biosynthesis and chlorophyll degradation, and a delayed respiration peak. Moreover, LCH-treated fruit exhibited reduced hydrogen peroxide (H2O2) accumulation and increased activities of superoxide dismutase (SOD), catalase (CAT), and monodehydroascorbate reductase (MDHAR), compared with control fruit. Furthermore, transcriptome analysis revealed that a substantial number of genes related to ethylene biosynthesis (ACS2, ACS4, ACO1, ACO3), carotenoid biosynthesis (PSY, PDS, ZDS, CRTISO), cell wall degradation (PG1/2, PL, TBG4, XTH4), and ripening-related regulators (RIN, NOR, AP2a, DML2) were downregulated by LCH, resulting in delayed ripening. These findings suggest that the application of LCH delays the ripening of harvested tomato fruit by modulating the redox balance and suppressing the expression of ripening-related genes.

3.
Compr Rev Food Sci Food Saf ; 21(5): 4251-4273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876655

RESUMO

Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.


Assuntos
Frutas , Verduras , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Frutas/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
4.
Microbiol Res ; 256: 126952, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34968824

RESUMO

Fusarium proliferatum causes the crown rot of harvested banana fruit but the underling infection mechanism remains unclear. Here, proteomic changes of the banana peel with and without inoculation of F. proliferatum were evaluated. In addition, we investigated the effects of F. proliferatum infection on cell structure, hormone content, primary metabolites and defense-related enzyme activities in the banana peel. Our results showed that F. proliferatum infection mainly affects cell wall components and inhibits the activities of polyphenoloxidase, peroxidase, and chitinase. Gel free quantitative proteomic analysis showed 92 down-regulated and 29 up-regulated proteins of banana peel after F. proliferatum infection. These proteins were mainly related to defense response to biotic stress, chloroplast structure and function, JA signaling pathway, and primary metabolism. Although jasmonic acid (JA) content and JA signaling component coronatine-insensitive (COI) protein were induced by F. proliferatum infection, JA-responsible defense genes/proteins were downregulated. In contrast, expression of senescence-related genes was induced by F. proliferatum, indicating that F. proliferatum modulated the JA signaling to accelerate the senescence of banana fruit. Additionally, salicylic acid (SA) content and SA signaling for resistance acquisition were inhibited by F. proliferatum. Taken together, these results suggest that F. proliferatum depolymerizes the cell wall barrier, impairs the defense system in banana fruit, and activates non-defensive JA-signaling pathway accelerated the senescence of banana fruit. This study provided the elucidation of the prominent pathways disturbed by F. proliferatum in banana fruit, which will facilitate the development of a new strategy to control crown rot of banana fruit and improvement of banana cultivars.


Assuntos
Fusarium , Musa , Frutas , Proteômica
5.
New Phytol ; 232(1): 237-251, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137052

RESUMO

Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.


Assuntos
Frutas , Fatores de Transcrição , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Metionina , Metionina Sulfóxido Redutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Food Chem ; 342: 128537, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33183876

RESUMO

Three water-soluble polysaccharides (UPPs 1-3) were obtained from edible green alga Ulva pertusa. The chemico-physical analyses indicated that UPPs 1-3 possessed molecular weights of 376.7 kDa, 57.21 kDa, and 131.13 kDa, with sulfate contents of 26.01 ± 8.13%, 9.86 ± 3.24%, and 13.32 ± 6.56%, respectively, and composed of arabinose, galactose, glucose, xylose, galacturonic acid, glucuronic acid, and mannuronic acid, with different ratios. The in vitro studies revealed that UPP-1 showed significant effects on the proliferation and phagocytic activity of macrophage, release of nitric oxide, and secretion of cytokines (TNF-α and IL-6). The transcript-metabolite analysis of UPP-1 treated macrophage revealed 4747 differential genes (2416 up-regulated and 2331 down-regulated) and 94 differential metabolites (77 up-regulated and 17 down-regulated) that significantly co-mapped a transcript-metabolite correlation network of biosynthesis of amino acids, glycerophospholipid metabolism, and carbon metabolism. Thus, these findings provide a valuable foundation for the potential application of U. pertusa polysaccharides.


Assuntos
Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Polissacarídeos/química , Ulva/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fatores Imunológicos/química , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Peso Molecular , Fagocitose/efeitos dos fármacos , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos/análise , Sulfatos/química , Regulação para Cima/efeitos dos fármacos
7.
Food Chem ; 345: 128664, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33340895

RESUMO

Thioredoxins (Trxs) are important redox regulators in organisms. However, their involvement in fruit senescence and quality deterioration remains unclear. In this study, one Trx (DlTrx1) and one NADPH-dependent Trx reductase (DlNRT1) cDNAs, were cloned from longan fruit. The DlTrx1 could be effectively reduced by the DlNTR1. Expression of DlTrx1 and DlNTR1 were up-regulated during fruit senescence and quality deterioration. We further identified 33 potential Trx target proteins in longan, including one glutathione peroxidase (DlGpx). DlTrx1 could physically interact with DlGpx. DlTrx1 in combination with DlNTR1 effectively activated DlGpx activity by regulating its redox state. Cys90 in DlGPx could form a disulfide bond with either Cys42 or Cys71, which were the sites of redox modulation. Furthermore, DlGpx exhibited a higher ratio of disulfide bonds to sulfhydryl groups in senescent or deteriorative fruit. We propose that Trx-mediated redox regulation of DlGpx is involved in senescence or quality deterioration of harvested longan fruit.


Assuntos
Qualidade dos Alimentos , Frutas/metabolismo , Glutationa Peroxidase/metabolismo , Sapindaceae/metabolismo , Tiorredoxinas/metabolismo , Glutationa/metabolismo , Oxirredução
8.
Virulence ; 11(1): 748-768, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525727

RESUMO

Blue and green molds, the common phenotypes of post-harvest diseases in fruits, are mainly caused by Penicillium fungal species, including P. italicum, P. digitatum, and P. expansum. We sequenced and assembled the genome of a P. italicum strain, which contains 31,034,623 bp with 361 scaffolds and 627 contigs. The mechanisms underlying the evolution of host specificity among the analyzed Penicillium species were associated with the expansion of protein families, genome restructuring, horizontal gene transfer, and positive selection pressure. A dual-transcriptome analysis following the infection of Valencia orange (Citrus sinensis) by P. italicum resulted in the annotation of 9,307 P. italicum genes and 24,591 Valencia orange genes. The pathogenicity of P. italicum may be due to the activation of effectors, including 51 small secreted cysteine-rich proteins, 110 carbohydrate-active enzymes, and 12 G protein-coupled receptors. Additionally, 211 metabolites related to the interactions between P. italicum and Valencia orange were identified by gas chromatography-time of flight mass spectrography, three of which were further confirmed by ultra-high performance liquid chromatography triple quadrupole mass spectrometry. A metabolomics analysis indicated that P. italicum pathogenicity is associated with the sphingolipid and salicylic acid signaling pathways. Moreover, a correlation analysis between the metabolite contents and gene expression levels suggested that P. italicum induces carbohydrate metabolism in Valencia orange fruits as part of its infection strategy. This study provides useful information regarding the genomic determinants that drive the evolution of host specificity in Penicillium species and clarifies the host-plant specificity during the infection of Valencia orange by P. italicum. IMPORTANCE: P. italicum GL_Gan1, a local strain in Guangzhou, China, was sequenced. Comparison of the genome of P. italicum GL_Gan1 with other pathogenic Penicillium species, P. digitatum and P. expansum, revealed that the expansion of protein families, genome restructuring, HGT, and positive selection pressure were related to the host range expansion of the analyzed Penicillium species. Moreover, gene gains or losses might be associated with the speciation of these Penicillium species. In addition, the molecular basis of host-plant specificity during the infection of Valencia orange (Citrus sinensis) by P. italicum was also elucidated by transcriptomic and metabolomics analysis. The data presented herein may be useful for further elucidating the molecular basis of the evolution of host specificity of Penicillium species and for illustrating the host-plant specificity during the infection of Valencia orange by P. italicum.


Assuntos
Citrus sinensis/microbiologia , Genoma Fúngico , Especificidade de Hospedeiro , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , China , Biologia Computacional , Perfilação da Expressão Gênica , Genômica , Penicillium/classificação , Transcriptoma , Virulência
9.
New Phytol ; 225(1): 385-399, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429090

RESUMO

Plant microRNAs (miRNAs) regulate vital cellular processes, including responses to extreme temperatures with which reactive oxygen species (ROS) are often closely associated. In the present study, it was found that aberrant temperatures caused extensive changes in abundance to numerous miRNAs in banana fruit, especially the copper (Cu)-associated miRNAs. Among them, miR528 was significantly downregulated under cold stress and it was found to target genes encoding polyphenol oxidase (PPO), different from those identified in rice and maize. Expression of PPO genes was upregulated by > 100-fold in cold conditions, leading to ROS surge and subsequent peel browning of banana fruit. Extensive comparative genomic analyses revealed that the monocot-specific miR528 can potentially target a large collection of genes encoding Cu-containing proteins. Most of them are actively involved in cellular ROS metabolism, including not only ROS generating oxidases, but also ROS scavenging enzymes. It also was demonstrated that miR528 has evolved a distinct preference of target genes in different monocots, with its target site varying in position among/within gene families, implying a highly dynamic process of target gene diversification. Its broad capacity to target genes encoding Cu-containing protein implicates miR528 as a key regulator for modulating the cellular ROS homeostasis in monocots.


Assuntos
Cobre/metabolismo , Genes de Plantas , Homeostase , MicroRNAs/metabolismo , Musa/genética , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Sequência Conservada/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Lacase/genética , MicroRNAs/genética , Modelos Biológicos , Oxirredução , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Temperatura
10.
J Zhejiang Univ Sci B ; 20(6): 503-512, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31090276

RESUMO

Litchi (Litchi chinensis Sonn.) and longan (Dimocarpus longan Lour.) fruits have a succulent and white aril with a brown seed and are becoming popular worldwide. The two fruits have been used in traditional Chinese medicine as popular herbs in the treatment of neural pain, swelling, and cardiovascular disease. The pericarp and seed portions as the by-products of litchi and longan fruits are estimated to be approximately 30% of the dry weight of the whole fruit and are rich in bioactive constituents. In the recent years, many biological activities, such as tyrosinase inhibitory, antioxidant, anti-inflammatory, immunomodulatory, anti-glycated, and anti-cancer activities, as well as memory-increasing effects, have been reported for the litchi and longan pericarp and seed extracts, indicating a potentially significant contribution to human health. With the increasing production of litchi and longan fruits, enhanced utilization of the two fruit by-products for their inherent bioactive constituents in relation to pharmacological effects is urgently needed. This paper reviews the current advances in the extraction, processing, identification, and biological and pharmacological activities of constituents from litchi and longan by-products. Potential utilization of litchi and longan pericarps and seeds in relation to further research is also discussed.


Assuntos
Litchi/química , Sapindaceae/química , Frutas/química , Humanos , Compostos Fitoquímicos/análise , Extratos Vegetais/farmacologia , Sementes/química
11.
Food Chem Toxicol ; 123: 374-384, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30428381

RESUMO

Ochratoxin A (OTA) and citrinin (CTN) are important mycotoxins, which often coexist in food and feed stuff. In this study, individual and combinative cytotoxicity of OTA and CTN were tested in human embryonic kidney (HEK) 293 cells via MTT assay, and synergistic cytotoxic effects were found following co-treatment with OTA and CTN, manifested by significant accumulation of HEK293 cells in S and G2/M stages. Transcriptomic and sRNA sequencing were performed to explore molecular signatures mediating individual or combinative cytotoxicity. A total of 378 miRNAs were identified, among which 66 miRNAs targeting thousands of genes were differentially expressed in response to different treatments, and 120 differentially expressed genes (DEGs) were regulated by either individual or combinative treatments. Correlations between two representative miRNAs (hsa-miR-1-3p and hsa-miR-122-5p), and their target genes, programmed cell death 10 (PDCD10) and cyclin G1 (CCNG1), associated with apoptotic signaling and cell cycle were analyzed by luciferase assay system. Further, their expression patterns were validated by quantitative real-time PCR and western blot analysis, suggesting that both miRNA-target interactions might account for the mycotoxin-induced cell death. Taken together, these findings provide molecular evidences for synergistic cytotoxic effects of exposure to single and mixture of OTA and CTN in HEK293 cells.


Assuntos
Citrinina/toxicidade , Ocratoxinas/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células HEK293 , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
12.
Molecules ; 23(2)2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29463053

RESUMO

The aim of this work was to evaluate the main nutrients and their antioxidant properties of a Chinese wild edible fruit, Passiflora foetida, collected from the ecoregion of Hainan province, China. The analytical results revealed that P. foetida fruits were rich in amino acids (1097 mg/100 g in total), minerals (595.75 mg/100 g in total), and unsaturated fatty acids (74.18 g/100 g in total fat). The lyophilized powder of edible portion contained the higher polyphenols content than the inedible portion powder. The UPLC-Q-TOF-MSE analysis of the extractable and non-extractable phenolics indicated the presence of 65 compounds including 39 free phenolics, 14 insoluble-glycoside-phenolics, and 22 insoluble-ester-phenolics. In addition, the non-extractable phenolics obtained by alkali hydrolysis showed significant antioxidant activities by/through DPPH and ABTS radical scavenging. These findings of P. foetida fruits, for the first time, suggest that these polyphenol-rich fruits may have potential nutraceutical efficacies.


Assuntos
Antioxidantes/química , Passiflora/química , Extratos Vegetais/química , Polifenóis/química , China , Flavonoides/química , Frutas/química , Avaliação Nutricional , Fenóis/química
13.
J Proteomics ; 164: 59-72, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28522339

RESUMO

Fusarium proliferatum as a fungal pathogen can produce fumonisin which causes a great threat to animal and human health. Proteomic approach was a useful tool for investigation into mycotoxin biosynthesis in fungal pathogens. In this study, we analyzed the fumonisin content and mycelium proteins of Fusarium proliferatum cultivated under the initial pH5 and 10. Fumonisin production after 10days was significantly induced in culture condition at pH10 than pH5. Ninety nine significantly differently accumulated protein spots under the two pH conditions were detected using two dimensional polyacrylamide gel electrophoresis and 89 of these proteins were successfully identified by MALDI-TOF/TOF and LC-ESI-MS/MS analysis. Among these 89 proteins, 45 were up-regulated at pH10 while 44 were up-accumulated at pH5. At pH10, these proteins were found to involve in the modification of fumonisin backbone including up-regulated polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase, which might contribute to the induction of fumonisin production. At pH5, these up-regulated proteins such as l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase might inhibit the condensation of fumonisin backbone, resulting in reduced production of fumonisins. These results may help us to understand the molecular mechanism of the fumonisin synthesis in F. proliferatum. BIOLOGICAL SIGNIFICANCE: To extend our understanding of the mechanism of the fumonisin biosynthesis of F. proliferatum, we reported the fumonisin production in relation to the differential proteins of F. proliferatum mycelium under two pH culture conditions. Among these 89 identified spots, 45 were up-accumulated at pH10 while 44 were up-accumulated at pH5. Our results revealed that increased fumonisin production at pH10 might be related to the induction of fumonisin biosynthesis caused by up-regulation of polyketide synthase, cytochrome P450, S-adenosylmethionine synthase and O-methyltransferase. Meanwhile, the up-regulation of l-amino-acid oxidase, isocitrate dehydrogenase and citrate lyase at pH5 might be related to the inhibition of the condensation of fumonisin backbone, resulting in reduced production of fumonisin. These results may help us to understand better the molecular mechanism of the fumonisin synthesis in F. proliferatum and then broaden the current knowledge of the mechanism of the fumonisin biosynthesis.


Assuntos
Fumonisinas/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Proteômica , Concentração de Íons de Hidrogênio
14.
Int J Mol Sci ; 17(7)2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27420043

RESUMO

Condensed tannin is a ubiquitous polyphenol in plants that possesses substantial antioxidant capacity. In this study, we have investigated the polyphenol extraction recovery and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the extracted polyphenol after litchi pericarp is treated with Aspergillus awamori, Aspergillus sojae or Aspergillus oryzae. We have further explored the activity of A. awamori in the formation of condensed tannin. The treatment of A. awamori appeared to produce the highest antioxidant activity of polyphenol from litchi pericarp. Further studies suggested that the treatment of A. awamori releases the non-extractable condensed tannin from cell walls of litchi pericarp. The total extractable tannin in the litchi pericarp residue after a six-time extraction with 60% ethanol increased from 199.92 ± 14.47-318.38 ± 7.59 µg/g dry weight (DW) after the treatment of A. awamori. The ESI-TOF-MS and HPLC-MS² analyses further revealed that treatment of A. awamori degraded B-type condensed tannin (condensed flavan-3-ol via C4-C8 linkage), but exhibited a limited capacity to degrade the condensed tannin containing A-type linkage subunits (C4-C8 coupled C2-O-C7 linkage). These results suggest that the treatment of A. awamori can significantly improve the production of condensed tannin from litchi pericarp.


Assuntos
Antioxidantes/química , Aspergillus/metabolismo , Litchi/química , Taninos/química , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Frutas/química , Frutas/metabolismo , Litchi/metabolismo , Espectrometria de Massas , Polifenóis/análise , Polifenóis/química , Polifenóis/metabolismo , Taninos/análise , Taninos/metabolismo
15.
Front Microbiol ; 7: 1038, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468276

RESUMO

Fusarium proliferatum as a common fungus pathogen in foods can produce toxic fumonisins, which can cause animal diseases and increase risks of human cancers. On contrary, butylated hydroxyanisole (BHA) as a synthetic antioxidant offers a clue for preventing growth of fungal species and inhibiting production of mycotoxins. Unfortunately, information of the inhibitory mechanism of BHA on Fusarium species is still limited. In this study, influence of BHA treatment on growth and inhibition of fumonisin production in relation to the expression of the fumonisin biosynthesis-related genes of the F. proliferatum ZYF was investigated, which revealed that BHA had a negative influence on growth and fumonisin production of F. proliferatum. To further elucidate the mechanism of BHA on the growth of F. proliferatum, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the F. proliferatum hyphae. The BHA treatment induced the loss of cytoplasm and cellular constituents, as well as distortion of mycelia, but it did not directly degrade the fumonisin. Furthermore, the BHA treatment markedly inhibited the expressions of FUM1 (a polyketide synthase encoding gene) and FUM8 (an aminotransferase encoding gene) genes, which resulted in the depression of metabolic pathway of F. proliferatum. The transcriptional analyses of the FUM1 and FUM8 genes confirmed a correlation between the fumonisin production and its gene expression. This study provided some insights into mechanisms of production of fumonisin and feasible prevention to reduce fumonisin contamination in favor of human and animal health.

16.
Sci Rep ; 6: 19356, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26763309

RESUMO

Litchi is a non-climacteric subtropical fruit of high commercial value. The shelf life of litchi fruit under ambient conditions (AC) is approximately 4-6 days. Post-harvest cold storage prolongs the life of litchi fruit for up to 30 days with few changes in pericarp browning and total soluble solids. However, the shelf life of litchi fruits at ambient temperatures after pre-cold storage (PCS) is only 1-2 days. To better understand the mechanisms involved in the rapid fruit senescence induced by pre-cold storage, a transcriptome of litchi pericarp was constructed to assemble the reference genes, followed by comparative transcriptomic and metabolomic analyses. Results suggested that the senescence of harvested litchi fruit was likely to be an oxidative process initiated by ABA, including oxidation of lipids, polyphenols and anthocyanins. After cold storage, PCS fruit exhibited energy deficiency, and respiratory burst was elicited through aerobic and anaerobic respiration, which was regulated specifically by an up-regulated calcium signal, G-protein-coupled receptor signalling pathway and small GTPase-mediated signal transduction. The respiratory burst was largely associated with increased production of reactive oxygen species, up-regulated peroxidase activity and initiation of the lipoxygenase pathway, which were closely related to the accelerated senescence of PCS fruit.


Assuntos
Conservação de Alimentos , Litchi/genética , Litchi/metabolismo , Metaboloma , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Conservação de Alimentos/métodos , Frutas , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Metabolômica , Oxirredução , Fosforilação , Reprodutibilidade dos Testes , Metabolismo Secundário/genética , Transdução de Sinais
17.
Front Plant Sci ; 6: 845, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528309

RESUMO

To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit.

18.
Molecules ; 19(10): 16837-50, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25335111

RESUMO

To understand the potential of application of tea polyphenols to the shelf life extension and quality maintenance of litchi (Litchi chinensis Sonn.) fruit, the fruits were dipped into a solution of 1% tea phenols for 5 min before cold storage at 4 °C. Changes in browning index, contents of anthocyanins and phenolic compounds, superoxide dismutase (SOD) and peroxidase (POD) activities, O2.- production rate and H2O2 content, levels of relative leakage rate and lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured after 0, 10, 20 and 30 days of cold storage. The results showed that application of tea polyphenols markedly delayed pericarp browning, alleviated the decreases in contents of total soluble solids (TSS) and ascorbic acid, and maintained relatively high levels of total phenolics and anthocyanins of litchi fruit after 30 days of cold storage. Meanwhile, the treatment reduced the increases in relative leakage rate and lipid peroxidation content, delayed the increases in both O2.- production rate and H2O2 contents, and increased SOD activity but reduced POD activity throughout this storage period. These data indicated that the delayed pericarp browning of litchi fruit by the treatment with tea polyphenols could be due to enhanced antioxidant capability, reduced accumulations of reactive oxygen species and lipid peroxidation, and improved membrane integrity.


Assuntos
Antioxidantes/farmacologia , Frutas/química , Peroxidação de Lipídeos/efeitos dos fármacos , Litchi/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Chá , Compostos de Bifenilo/química , Temperatura Baixa , Peróxido de Hidrogênio/metabolismo , Oxirredução , Picratos/química , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
BMC Plant Biol ; 13: 55, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23547657

RESUMO

BACKGROUND: Recent studies have demonstrated that cellular energy is a key factor switching on ripening and senescence of fruit. However, the factors that influence fruit energy status remain largely unknown. RESULTS: HPLC profiling showed that ATP abundance increased significantly in developing preharvest litchi fruit and was strongly correlated with fruit fresh weight. In contrast, ATP levels declined significantly during postharvest fruit senescence and were correlated with the decrease in the proportion of edible fruit. The five gene transcripts isolated from the litchi fruit pericarp were highly expressed in vegetative tissues and peaked at 70 days after flowering (DAF) consistent with fruit ADP concentrations, except for uncoupling mitochondrial protein 1 (UCP1), which was predominantly expressed in the root, and ATP synthase beta subunit (AtpB), which was up-regulated significantly before harvest and peaked 2 days after storage. These results indicated that the color-breaker stage at 70 DAF and 2 days after storage may be key turning points in fruit energy metabolism. Transcript abundance of alternative oxidase 1 (AOX1) increased after 2 days of storage to significantly higher levels than those of LcAtpB, and was down-regulated significantly by exogenous ATP. ATP supplementation had no significant effect on transcript abundance of ADP/ATP carrier 1 (AAC1) and slowed the changes in sucrose non-fermenting-1-related kinase 2 (SnRK2) expression, but maintained ATP and energy charge levels, which were correlated with delayed senescence. CONCLUSIONS: Our results suggest that senescence of litchi fruit is closely related with energy. A surge of LcAtpB expression marked the beginning of fruit senescence. The findings may provide a new strategy to extend fruit shelf life by regulating its energy level.


Assuntos
Metabolismo Energético , Frutas/crescimento & desenvolvimento , Litchi/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Litchi/genética , Litchi/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Chem Cent J ; 6(1): 108, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23016522

RESUMO

BACKGROUND: Litchi (Litchi chinensis Sonn.) pericarp is a major byproduct which contains a significant amount of polyphenol. This study was designed to biotransformation litchi pericarp extract (LPE) by Aspergillus awamori to produce more bioactive compounds with stronger antioxidant activities. RESULTS: The study exhibited that the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities significantly (p < 0.05) increased from 15.53% to 18.23% in the water-extracted fraction and from 25.41% to 36.82% in the ethyl acetate-extracted fraction. Application of DNA cleavage assay further demonstrated the enhanced protection effect of the fermented phenolics on DNA damage. It is also noted that the water-extracted fraction of the fermented LPE possessed a much stronger capacity than the ethyl acetate-extracted fraction to prevent from damage of supercoiled DNA. Interestingly, it was found that some new compounds such as catechin and quercetin appeared after of A. awamori fermentation of LPE, which could account for the enhanced antioxidant activity. CONCLUSION: The DPPH radical scavenging activity and DNA protection effect of LPE were increased by Aspergillus awamori bioconversion while some compounds responsible for the enhanced antioxidant activity were identified. This study provided an effective way of utilizing fruit pericarp as a readily accessible source of the natural antioxidants in food industry and, thus, extended the application area such as fruit by-products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA