Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 17(22): 23115-23131, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934769

RESUMO

Deep burns are one of the most severe skin wounds, with typical symptoms being a contradiction between initial severe pain and a subsequent loss of sensation. Although it has long been known that sensory nerves promote skin regeneration and modulate skin function, no proven burn management strategies target sensory nerves. Here, a neuro-inspired biomimetic microreactor is designed based on the immune escape outer membrane of neuroblastoma cells and neural-associated intracellular proteins. The microreactor is constructed on a metal-organic framework (MOF) with a neuroblastoma membrane coating the surface and intracellular proteins loaded inside, called Neuro-MOF. It is loaded into a therapeutic hydrogel and triggers the release of its content proteins upon excitation by near-infrared light. The proteins compensate the skin microenvironment for permanent neurological damage after burns to initiate peripheral nerve regeneration and hair follicle niche formation. In addition, the neuroblastoma cell membrane is displayed on the surface of the Neuro-MOF microreactor, decreasing its immunogenicity and suppressing local inflammation. In a mouse model of deep skin burns, the Neuro-MOF microreactor exhibited significant functional skin regeneration effects, particularly sensory recovery and hair follicle neogenesis.


Assuntos
Queimaduras , Neuroblastoma , Camundongos , Animais , Folículo Piloso , Cicatrização/fisiologia , Biomimética , Pele , Microambiente Tumoral
3.
Artigo em Inglês | MEDLINE | ID: mdl-37877885

RESUMO

Sonodynamic therapy (SDT) has considerable potential in cancer treatment and exhibits high tissue penetration with minimal damage to healthy tissues. The efficiency of SDT is constrained by the complex immunological environment and tumor treatment resistance. Herein, a specific acoustic-actuated tumor-targeted nanomachine is proposed to generate mechanical damage to lysosomes for cancer SDT. The hybrid nanomachine was assembled with gold nanoparticles (GNPs) as the core and encapsulated with macrophage exosomes modified by AS1411 aptamers (GNP@EXO-APs) to optimize the pharmacokinetics and tumor aggregation. GNP@EXO-APs could be specifically transferred to the lysosomes of tumor cells. After induction with ultrasound, GNP@EXO-APs generated strong mechanical stress to produce lysosomal-dependent cell death in cancer cells. Notably, tumor-associated macrophages were reprogrammed in the ultrasound environment to an antitumor phenotype. Enhanced mechanical destruction via GNP@EXO-APs and immunotherapy of cancer cells were verified both in vitro and in vivo under SDT. This study provides a new direction for inside-out killing effects on tumor cells for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA