Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 186: 31-39, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803089

RESUMO

Exploring novel growth regulators for premature senescence regulation is important for tobacco production. In the present study, chlorine dioxide (ClO2) was explored as a novel plant growth regulator for tobacco growth, particularly its effect on leaf senescence and root development. The results showed that 0.15 µM ClO2 maintained the lushness of detached leaves and whole plants. Also, the leaves of ClO2-treated plants exhibited a chlorophyll content of 58% higher than in CK (control) plants (P < 0.05). Besides, ClO2 treatment increased the biomass of roots and aboveground parts by 54 and 16%, respectively. The ClO2-treated plants also showed enhanced activities of antioxidant enzymes and significantly reduced malondialdehyde contents (P < 0.05). Moreover, ClO2 treatment remarkably alleviated drought-caused premature senescence in the tobacco plants and partly rescued the exogenous ethylene-caused plant dwarfism. The indole-3-acetic acid content in ClO2-treated plants was higher than in non-treated plants (P < 0.05), but ethylene content was significantly lower (P < 0.05). Gene expression analysis showed that ClO2 treatment remarkably suppressed ethylene synthase genes. However, the auxin biosynthesis and transport genes were up-regulated, with NtIAA17 increasing by five folds (P < 0.05). Further, ClO2 remarkably up-regulated the expression of chlorophyll biosynthesis genes, with a >20-fold increase in NtHEMA1 and NtCHLH expressions. These results designate ClO2 as a potential regulator for improving tobacco productivity by retaining higher chlorophyll content and promoting root growth.


Assuntos
Nicotiana , Senescência Vegetal , Compostos Clorados , Clorofila/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Óxidos , Folhas de Planta/metabolismo , Nicotiana/metabolismo
2.
Plant Physiol Biochem ; 177: 1-9, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219190

RESUMO

High temperature is one of the main abiotic factors limiting agricultural production, particularly for heat-sensitive plant species. Small heat-shock proteins contribute substantially to alleviating damage to plants caused by heat stress. In the present study, the heat shock protein gene PtsHSP17.2 from Pinellia ternata was functionally characterized through promoter analysis and its overexpression in tobacco. Respectively, relative expression using real-time RT-PCR and ex situ promoter activity assay indicated that PtsHSP17.2 is strongly inducible under heat stress, and in silico promoter analysis discovered multiple stress-related cis elements including heat shock element. When overexpressing PtsHSP17.2 in tobacco, the thermotolerance of transgenic plants was markedly enhanced. Furthermore, the transgenic tobacco plants exhibited less variation in chlorophyll content, relative electrolyte leakage, and malondialdehyde content under heat stress compared with wild-type (WT) plants. The activities of antioxidant enzymes and content of proline were significantly enhanced under heat stress in transgenic plants relative to WT plants. Transgenic plants also had enhanced water retention and increased antioxidative capacity. Further, the expression levels of genes encoding antioxidant enzymes were more highly induced by heat stress in transgenic lines than WT. These results enrich the current understanding of thermal adaptation of heat-sensitive plant species and encourage further genetic improvement.


Assuntos
Proteínas de Choque Térmico Pequenas , Pinellia , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Pinellia/genética , Pinellia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo
3.
Plant Physiol Biochem ; 170: 218-224, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906904

RESUMO

Exposure to light induces tuber greening and the accumulation of the toxic alkaloid Solanine in potato (Solanum tuberosum L) during storage greatly reduce tuber value. While the mechanism of this greening process remains unclear, it is well understood that DNA methylation plays an important role in regulating gene expression in response to environmental conditions. In this study, methylation-sensitive amplified polymorphism was used to assess the effect of light exposure on DNA methylation during storage of potato tubers. Light-induced genome-wide DNA demethylation and the rate of DNA methylation decreased with long storage times. Following, the sequencing of 14 differentially amplified fragments and analysis using the Basic Local Alignment Search Tool, eight genomic sequences and six annotated fragment sequences were identified. The latter included ADP glucose pyrophosphorylase 1/2, chlorophyllide a oxygenase 1 (CAO1), receptor-like protein kinase HAIKU2, and repressor of GA4, all of which are involved in starch biosynthesis, chlorophyll synthesis, endosperm development, and gibberellic acid signaling, respectively. Demethylation was observed in the CpG island (-273 to -166 bp) of the CAO1 promoter in response to light, which further confirmed that the variations in genome methylation are dependent upon the light exposure and suggests a direct role for DNA methylation. Our results provide an epigenetic perspective for further exploring the mechanism of light-induced tuber greening.


Assuntos
Solanum tuberosum , Metabolismo dos Carboidratos , Metilação de DNA , Glucose-1-Fosfato Adenililtransferase , Tubérculos/genética , Solanum tuberosum/genética
4.
Food Chem ; 338: 127997, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091988

RESUMO

Flavonols are gaining increasing interests due to their diverse health benefits for humans. Broccoli is a main flavonol source in our diet, but the genetic variation of flavonols and their correlation with antioxidant capacity remain to be understood. Here, we examined variations of the two major flavonols kaempferol and quercetin in florets and leaves of 15 diverse broccoli accessions by ultra-performance liquid chromatography. Broccoli accumulated more kaempferol than quercetin in most of the accessions tested, with the ratios varying from 4.4 to 27.9 in leaves and 0.4 to 4.4 in florets. Total flavonoids showed 2.5-fold and 3.3-fold differences in leaves and florets of these accessions, respectively. Principle component analysis revealed that flavonols, along with the key biosynthetic pathway genes, correlated with antioxidant capacity related indicators. This study provides important information for broccoli flavonol genotypic variations and correlation with antioxidant capacity, and will facilitate the development of flavonol enriched cultivars in broccoli.


Assuntos
Antioxidantes/química , Brassica/genética , Flavonóis/análise , Variação Genética , Antioxidantes/metabolismo , Brassica/química , Brassica/metabolismo , Catalase/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonóis/metabolismo , Genótipo , Humanos , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , RNA de Plantas/química , RNA de Plantas/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA