Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Biochem Pharmacol ; : 116342, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848777

RESUMO

Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.

5.
Am J Cancer Res ; 13(10): 5021-5023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970365

RESUMO

[This corrects the article on p. 1577 in vol. 12, PMID: 35530299.].

6.
Clin Orthop Relat Res ; 481(11): 2140-2153, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768856

RESUMO

BACKGROUND: Liposarcoma is the most commonly diagnosed subtype of soft tissue sarcoma. As these tumors often arise near vital organs and neurovascular structures, complete resection can be challenging; consequently, recurrence rates are high. Additionally, available chemotherapeutic agents have shown limited benefit and substantial toxicities. There is, therefore, a clear and unmet need for novel therapeutics for liposarcoma. Discoidin domain receptor tyrosine kinase 1 (DDR1) is involved in adhesion, proliferation, differentiation, migration, and metastasis in several cancers. However, the expression and clinical importance of DDR1 in liposarcoma are unknown. QUESTIONS/PURPOSES: The purposes of this study were to assess (1) the expression, (2) the association between DDR1 and survival, and (3) the functional roles of DDR1 in liposarcoma. METHODS: The correlation between DDR1 expression in tumor tissues and clinicopathological features and survival was assessed via immunohistochemical staining of a liposarcoma tissue microarray. It contained 53 samples from 42 patients with liposarcoma and 11 patients with lipoma. The association between DDR1 and survival in liposarcoma was analyzed by Kaplan-Meier plots and log-rank tests. The DDR1 knockout liposarcoma cell lines were generated by CRISPR-Cas9 technology. The DDR1-specific and highly selective DDR1 inhibitor 7RH was applied to determine the impact of DDR1 expression on liposarcoma cell growth and proliferation. In addition, the effect of DDR1 inhibition on liposarcoma growth was further accessed in a three-dimensional cell culture model to mimic DDR1 effects in vivo. RESULTS: The results demonstrate elevated expression of DDR1 in all liposarcoma subtypes relative to benign lipomas. Specifically, high DDR1 expression was seen in 55% (23 of 42) of liposarcomas and no benign lipomas. However, DDR1 expression was not found to be associated with poor survival in patients with liposarcoma. DDR1 knockout or treatment of 7RH showed decreased liposarcoma cell growth and proliferation. CONCLUSION: DDR1 is aberrantly expressed in liposarcoma, and it contributes to several markers of oncogenesis in these tumors. CLINICAL RELEVANCE: This work supports DDR1 as a promising therapeutic target in liposarcoma.


Assuntos
Lipoma , Lipossarcoma , Humanos , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Proliferação de Células , Diferenciação Celular , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética
7.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408255

RESUMO

Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Senoterapia , Vesículas Extracelulares/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
Biochim Biophys Acta Rev Cancer ; 1877(6): 188812, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195275

RESUMO

Chordomas are malignant bone tumors that arise from remnants of the notochord. These tumors are generally slow-growing, locally aggressive, and invasive. Chordomas are typically resistant to conventional chemo- and radiotherapy. The clinical management of this disease is very challenging, usually, treatment is surgical resection, which may be combined with radiotherapy. Although chordomas have undergone histologic and genetic analysis, the molecular mechanisms that drive their pathogenesis and resistance are still largely unknown. For many years this could be attributed to the lack of accurate and reliable in vitro and in vivo tumor models. Yet, over the past decade, many efforts have been made to prioritize the generation of useful chordoma cell lines, and tumor models that have shed more light on this malignancy and have made efficacious drug discovery a greater possibility. This review summarizes and discusses recent enhancements and improvements made to generate useful chordoma models and their applications in drug discovery and precision medicine.


Assuntos
Neoplasias Ósseas , Cordoma , Humanos , Cordoma/tratamento farmacológico , Cordoma/genética , Cordoma/patologia , Medicina de Precisão , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Descoberta de Drogas
9.
J Nanobiotechnology ; 20(1): 403, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064358

RESUMO

The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.


Assuntos
Exossomos , Vesículas Extracelulares , Sarcoma , Comunicação Celular , Humanos , Microambiente Tumoral
10.
Cancer Lett ; 547: 215887, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35995141

RESUMO

Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.


Assuntos
Antineoplásicos Imunológicos , Neoplasias Ósseas , Osteossarcoma , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Proteínas Reguladoras de Apoptose , Antígeno B7-H1/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Antígeno CTLA-4 , Humanos , Imunoterapia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética
11.
Am J Cancer Res ; 12(4): 1577-1592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530299

RESUMO

Liposarcomas account for approximately 20% of all adult sarcomas and have limited therapeutic options outside of surgery. Inhibition of ataxia-telangiectasia and Rad3 related protein kinase (ATR) has emerged as a promising chemotherapeutic strategy in various cancers. However, its activation, expression, and function in liposarcoma remain unkown. In this study, we investigated the expression, function, and potential of ATR as a therapeutic target in liposarcoma. Activation and expression of ATR in liposarcoma was analyzed by immunohistochemistry, which was further explored for correlation with patient clinical characteristics. ATR-specific siRNA and the ATR inhibitor VE-822 were applied to determine the effect of ATR inhibition on liposarcoma cell proliferation and anti-apoptotic activity. Migration activity and clonogenicity were examined using wound healing and clonogenic assays. ATR (p-ATR) was overexpressed in 88.1% of the liposarcoma specimens and correlated with shorter overall survival in patients. Knockdown of ATR via specific siRNA or inhibition with VE-822 suppressed liposarcoma cell growth, proliferation, migration, colony-forming ability, and spheroid growth. Importantly, ATR inhibition significantly and synergistically enhanced liposarcoma cell line chemosensitivity to doxorubicin. Our findings support ATR as critical to liposarcoma proliferation and doxorubicin resistance. Therefore, the addition of ATR inhibition to a standard doxorubicin regimen is a potential treatment strategy for liposarcoma.

12.
Orthop Surg ; 14(5): 955-966, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35388973

RESUMO

OBJECTIVE: Although high-mobility group AT-hook 2 (HMGA2) has been shown to have crucial roles in the pathogenesis and metastasis of various malignancies, its expression and significance in osteosarcoma remain unknown. Here we evaluate the expression, clinical prognostic value, and overall function of HMGA2 in osteosarcoma. METHODS: Sixty-nine osteosarcoma patient specimens within a tissue microarray (TMA) were analyzed by immunohistochemistry for HMGA2 expression. Demographics and clinicopathological information including age, gender, tumor location, metastasis, recurrence, chemotherapy response, follow-up time, and disease status were also collected. After validation of expression, we determined whether there was a correlation between HMGA2 expression and patient clinicopathology. HMGA2 expression was also evaluated in osteosarcoma cell lines and patient tissues by Western blot, we analyzed the expression of HMGA2 in the human osteosarcoma cell lines MG63, 143B, U2OS, Saos-2, MNNG/HOS, and KHOS. HMGA2-specific siRNA and clonogenic assays were then used to determine the effect of HMGA2 inhibition on osteosarcoma cell proliferation, growth, and chemosensitivity. RESULTS: HMGA2 expression was elevated in the osteosarcoma patient specimens and human osteosarcoma cell lines. HMGA2 was differentially expressed in human osteosarcoma cell lines. Specifically, a relatively high expression of HMGA2 was present in KHOS, MNNG/HOS, 143B and a relatively low expression was in MG63, U2OS as well as Saos-2. HMGA2 expression is correlated with metastasis and shorter overall survival. High HMGA2 expression is an independent predictor of poor osteosarcoma prognosis. There was no significant correlation between HMGA2 expression and the age, gender, or tumor site of the patient. HMGA2 expression is predominantly within the nucleus. The expression of HMGA2 also directly correlated to neoadjuvant chemoresistance. There was a significant reduction of HMGA2 expression in the siRNA transfection group. After the use of siRNA, the proliferation of osteosarcoma cells is decreased and the chemosensitivity of osteosarcoma cells is significantly increased. CONCLUSION: Our study supports HMGA2 as a potential prognostic biomarker and therapeutic target in osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metilnitronitrosoguanidina , Osteossarcoma/metabolismo , RNA Interferente Pequeno
13.
Biomed Pharmacother ; 149: 112888, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35367753

RESUMO

Synovial sarcoma is typical aggressive malignant without satisfactory treatment outcome in adult series. Cyclin-dependent kinases (CDKs) in transcription have been considered promising molecular targets in cancer. Among these, CDK7 has been shown to play important roles in the pathogenesis of malignancies. However, the modulation mechanism of CDK7-regulated transcription in synovial sarcoma is unknown. In the present study, we aim to determine the expression and function of CDK7 in the transcription cycle of RNA polymerase II (RNAP II), and evaluate its prognostic and therapeutic significance in synovial sarcoma. Results showed that overexpression of CDK7 correlates with higher clinical stage and grade, and worse outcomes in clinic. High CDK7 expression was confirmed in all tested human synovial sarcoma cell lines and CDK7 was largely localized to the cell nucleus. Downregulation through siRNA or inhibition with the CDK7-targeting agent BS-181 exhibited dose-dependent cytotoxicity and prevented cell colony formation. Western blots demonstrated that inhibition of CDK7 paused transcription by a reduction of RNAP II phosphorylation. Blocking CDK7-dependent transcriptional addiction was accompanied by promotion of apoptosis. Furthermore, the CDK7-specific inhibitor reduced 3D spheroid formation and migration of synovial sarcoma. Collectively, our findings highlight the role of CDK7-dependent transcriptional addiction in human synovial sarcoma. CDK7-specific cytotoxic agents are therefore promising novel treatment options for synovial sarcoma.


Assuntos
Quinases Ciclina-Dependentes , Sarcoma Sinovial , Apoptose/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , RNA Interferente Pequeno/metabolismo , Sarcoma Sinovial/tratamento farmacológico , Sarcoma Sinovial/genética , Quinase Ativadora de Quinase Dependente de Ciclina
14.
Ann Transl Med ; 10(4): 203, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280383

RESUMO

Background: Challenges in medical care posed by rapid tumor progression, individualized responses to therapy, and the heterogeneous characteristics of breast cancer (BRCA) highlight the urgent need for new treatment strategies, as well as therapeutic and prognostic markers. Accumulating evidence has revealed that microRNAs broadly participate in carcinogenesis, but our understanding of the role of miR-93-5p in BRCA remains limited. Methods: The prognosis of miR-93-5p, programmed cell death-ligand 1 (PD-L1) and CCND1 were analyzed by datasets. Freshly excised breast cancer tissues (N=33) and adjacent noncancerous tissues (N=18) were collected to detect the expression of CCND1 and PD-L1 by immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) and Western blot were used to test the expression of miR-93-5p, PD-L1 and CCND1 after transfected mimics or inhibitors. Dual-luciferase reporter assay indicates the direct targeting between miR-93-5p and PD-L1. Results: Bioinformatics analysis demonstrated that miR-93-5p plays differential roles in various tumors, and further verification using qRT-PCR revealed that the expression levels of miR-93-5p were lower in MDA-MB-231 cells than in noncancerous breast cells. In addition, we confirmed that PD-L1 and CCND1 generated mutual effects, and miR-93-5p directly targets the PD-L1/CCND1 signaling pathway to influence their accumulation and distribution in the cell membrane, nucleus, and cytoplasm, mediating tumor progression and immune regulation in BRCA. Conclusions: Taken together, miR-93-5p could regulate tumorigenesis and tumor immunity by targeting PD-L1/CCND1 in BRCA and our research provides a rationale for therapy with miR-93-5p to overcome immune escape and improve risk stratification.

15.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34984436

RESUMO

BACKGROUND: Although weak SWI/SNF related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) expression is a known diagnostic and prognostic biomarker in several malignancies, its expression and clinical significance in osteosarcoma remain unknown. The aim of the present study was to investigate SMARCB1 expression in osteosarcoma and its clinical significance with respect to chemosensitivity and prognosis. METHODS: We obtained 114 specimens from 70 osteosarcoma patients to construct a tissue microarray (TMA) and assess SMARCB1 protein expression via immunohistochemistry (IHC). The mRNA expression of SMARCB1 was in-silico analyzed using open-access RNA sequencing (RNA-Seq) and clinicopathological data provided by the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) project. The correlations between SMARCB1 expression and clinical features were statistically analyzed. RESULTS: Weak SMARCB1 expression occurred in 70% of the osteosarcoma patient specimens in the TMA, and significantly correlated with poor neoadjuvant response as well as shorter overall and progression-free survival (PFS). In addition, mRNA in-silico analysis confirmed that SMARCB1 expression correlates with chemotherapeutic response and prognosis in osteosarcoma patients. CONCLUSION: To our knowledge, the present study is the first to analyze SMARCB1 expression in osteosarcoma. SMARCB1 may serve as a novel diagnostic and prognostic biomarker in osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Proteína SMARCB1 , Biomarcadores , Biomarcadores Tumorais/genética , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Humanos , Osteossarcoma/diagnóstico , Osteossarcoma/genética , Prognóstico , RNA Mensageiro , Proteína SMARCB1/genética
16.
Exp Ther Med ; 23(1): 54, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34934431

RESUMO

MicroRNAs (miRNAs/miRs) are small endogenous RNAs that regulate gene expression post-transcriptionally. Abnormal miR-3609 expression is associated with the occurrence of pancreatic cancer, glioma and other diseases, such as polycystic ovary syndrome. However, the prognostic potential of miR-3609 has been reported in breast cancer. Thus, the present study aimed to investigate the differential expression and prognostic value of miR-3609 in patients with breast cancer from the UALCAN, cBioportal and Kaplan-Meier Plotter databases, respectively. Furthermore, the co-expression genes of miR-3609 in breast cancer were investigated using data from the LinkedOmics database, and functional enrichment analysis was performed using the LinkInterpreter module in LinkedOmics. The co-expression gene network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and the cytoHubba plug-in was used to identify the hub genes, which were visualized using Cytoscape software. The prognoses of the hub genes were performed using the Kaplan-Meier Plotter database. The Cell Counting Kit-8 and cell cycle assays were performed to confirm the functions of miR-3609 mimics transfection in MDA-MB-231 cells. Survival analysis using the Kaplan-Meier Plotter database demonstrated that high miR-3609 expression in triple-negative breast cancer (TNBC) was associated with a better prognosis. Furthermore, the experimental results indicated that high miR-3609 expression inhibited the proliferation of TNBC cells and induced cell cycle arrest of TNBC cells in the G0/G1 phase. Taken together, the results of the present study suggest that miR-3609 plays a vital role in mediating cell cycle arrest and inhibiting the proliferation of TNBC cells.

17.
Cancer Control ; 28: 10732748211045274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767468

RESUMO

BACKGROUND: The dedifferentiated variant of chondrosarcoma is highly aggressive and carries an especially grim prognosis. While chemotherapeutics has failed to benefit patients with dedifferentiated chondrosarcoma significantly, preclinical chemosensitivity studies have been limited by a scarcity of available cell lines. There is, therefore, an urgent need to expand the pool of available cell lines. METHODS: We report the establishment of a novel dedifferentiated chondrosarcoma cell line DDCS2, which we isolated from the primary tumor specimen of a 60-year-old male patient. We characterized its short tandem repeat (STR) DNA profile, growth potential, antigenic markers, chemosensitivity, and oncogenic spheroid and colony-forming capacity. RESULTS: DDCS2 showed a spindle to polygonal shape and an approximate 60-hour doubling time. STR DNA profiling revealed a unique genomic identity not matching any existing cancer cell lines within the ATCC, JCRB, or DSMZ databases. There was no detectable contamination with another cell type. Western blot and immunofluorescence assays were consistent with a mesenchymal origin, and our MTT assay revealed relative resistance to conventional chemotherapeutics, which is typical of a dedifferentiated chondrosarcoma. Under ex vivo three-dimensional (3D) culture conditions, the DDCS2 cells produced spheroid patterns similar to the well-established CS-1 and SW1353 chondrosarcoma cell lines. CONCLUSION: Our findings confirm DDCS2 is a novel model for dedifferentiated chondrosarcoma and therefore adds to the limited pool of current cell lines urgently needed to investigate the chemoresistance within this deadly cancer.


Assuntos
Neoplasias Ósseas/patologia , Condrossarcoma/patologia , Linhagem Celular Tumoral , Impressões Digitais de DNA , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade
18.
Ther Adv Musculoskelet Dis ; 13: 1759720X21995069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104229

RESUMO

BACKGROUND: Overexpression of cyclin-dependent kinase 7 (CDK7) is a well-known pathogenic feature of various malignancies and a sign of a more dismal prognosis. As relatively little is known about CDK7 in osteosarcoma, we elected to evaluate its expression, prognostic value, and function. METHODS: We began by analyzing the publicly available data sets on CDK7 expression, including RNA sequencing data from the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) and the Gene Expression database of Normal and Tumor tissues 2 (GENT2). The correlation between patient tissue CDK7 expression and their clinicopathological features and prognosis was assessed via immunohistochemical staining of a unique tissue microarray constructed from osteosarcoma specimens. Furthermore, we analyzed CDK7 expression in osteosarcoma cell lines and tissues by Western blot. CDK7-specific siRNA and a highly-selective CDK7 inhibitor, BS-181, were applied to determine the function of CDK7 on osteosarcoma cell growth and proliferation. In addition, the effect of CDK7 inhibition on clonogenicity was evaluated using a clonogenic assay, and a 3D cell culture model was used to mimic CDK7 effects in an in vivo environment. RESULTS: Our results demonstrate that higher CDK7 expression significantly correlates with recurrence, metastasis, and shorter overall survival in osteosarcoma patients. Therapeutically, we show that CDK7 knockdown with siRNA or selective inhibition with BS-181 decreases proliferation and induces apoptosis of osteosarcoma cells. CONCLUSION: This study supports CDK7 overexpression as an independent predictor of poor prognosis and promising therapeutic target for osteosarcoma.

19.
Mol Oncol ; 15(12): 3721-3737, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34115928

RESUMO

T-lymphokine-activated killer (T-LAK) cell-originated protein kinase (TOPK) is an emerging target with critical roles in various cancers; however, its expression and function in osteosarcoma remain unexplored. We evaluated TOPK expression using RNA sequencing and gene expression data from public databases (TARGET-OS, CCLE, GTEx, and GENT2) and immunohistochemistry in an osteosarcoma tissue microarray (TMA). TOPK gene expression was significantly higher in osteosarcoma than normal tissues and directly correlated with shorter overall survival. TOPK was overexpressed in 83.3% of the osteosarcoma specimens within our TMA and all osteosarcoma cell lines, whereas normal osteoblast cells had no aberrant expression. High expression of TOPK associated with metastasis, disease status, and shorter overall survival. Silencing of TOPK with small interfering RNA (siRNA) decreased cell viability, and inhibition with the selective inhibitor OTS514 suppressed osteosarcoma cell proliferation, migration, colony-forming ability, and spheroid growth. Enhanced chemotherapeutic sensitivity and a synergistic effect were also observed with the combination of OTS514 and either doxorubicin or cisplatin in osteosarcoma cell lines. Taken together, our study demonstrated that TOPK is a potential prognostic biomarker and therapeutic target for osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Biomarcadores , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Humanos , Células Matadoras Ativadas por Linfocina/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Prognóstico
20.
Front Oncol ; 11: 644857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981605

RESUMO

Isocitrate dehydrogenase (IDH) is a key metabolic enzyme catalyzing the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in IDH lead to loss of normal enzymatic activity and gain of neomorphic activity that irreversibly converts α-KG to 2-hydroxyglutarate (2-HG), which can competitively inhibit a-KG-dependent enzymes, subsequently induces cell metabolic reprograming, inhibits cell differentiation, and initiates cell tumorigenesis. Encouragingly, this phenomenon can be reversed by specific small molecule inhibitors of IDH mutation. At present, small molecular inhibitors of IDH1 and IDH2 mutant have been developed, and promising progress has been made in preclinical and clinical development, showing encouraging results in patients with IDH2 mutant cancers. This review will focus on the biological roles of IDH2 mutation in tumorigenesis, and provide a proof-of-principle for the development and application of IDH2 mutant inhibitors for human cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA