Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(30): e2400630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431937

RESUMO

Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Glioma , Pró-Fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/química , Nanopartículas/química , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Curcumina/química , Curcumina/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia
2.
Acta Pharm Sin B ; 14(2): 854-868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322330

RESUMO

Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.

3.
Small Methods ; 8(1): e2301127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849248

RESUMO

Despite the tremendous progress in cancer treatment in recent decades, cancers often become resistant due to multiple mechanisms, such as intrinsic or acquired multidrug resistance, which leads to unsatisfactory treatment effects or accompanying metastasis and recurrence, ultimately to treatment failure. With a deeper understanding of the molecular mechanisms of tumors, researchers have realized that treatment designs targeting tumor resistance mechanisms would be a promising strategy to break the therapeutic deadlock. Nanodelivery systems have excellent physicochemical properties, including highly efficient tissue-specific delivery, substantial specific surface area, and controllable surface chemistry, which endow nanodelivery systems with capabilities such as precise targeting, deep penetration, responsive drug release, multidrug codelivery, and multimodal synergy, which are currently widely used in biomedical researches and bring a new dawn for overcoming cancer resistance. Based on the mechanisms of tumor therapeutic resistance, this review summarizes the research progress of nanodelivery systems for overcoming tumor resistance to improve therapeutic efficacy in recent years and offers prospects and challenges of the application of nanodelivery systems for overcoming cancer resistance.


Assuntos
Nanomedicina , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias/tratamento farmacológico , Falha de Tratamento
4.
Sci Total Environ ; 851(Pt 1): 158047, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985600

RESUMO

The transportation processes during aquatic systems regulate the ultimate chemistry of dissolved organic matter (DOM), and in recent years, climate changes and human activities have altered the hydrological patterns of many rivers and lakes, which generated some severe issues, such as hydrological isolation. However, how hydrological isolation affects variations of DOM chemistry in large lake systems is still poorly understood. Here, optical properties and molecular compositions of DOM samples derived from a large river-connected lake (Poyang Lake, China) and its nearby seasonal sub-lakes (formed by hydrological isolation) were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS) and ultraviolet-visible (UV-Vis) spectroscopy. The results revealed more abundance of organic matter in sub-lakes than that in the main lake according to high dissolved organic carbon (DOC) concentrations and absorption coefficients (a254 and a280). Large proportions of CHOS formulas were identified by FT ICR MS in sub-lakes DOM, which were produced through Kraft reactions (sulfide/bisulfide + lignin CHO → CHOS) in the interface of sediment/water, and greatly contributed to aliphatic compounds. In addition, obvious variations of compounds (such as polyphenols, highly unsaturated and aliphatic compounds) and lability of DOM were observed between sub-lakes and main lakes, which were mainly caused by the different degradation pathways of DOM (photodegradation in sub-lakes while biodegradation in the main lake). Our results demonstrated that hydrological isolation has significant impacts on DOM chemistry, and provides an improved understanding of the DOM biogeochemistry process in Poyang Lake and supports the management of the large lake systems.


Assuntos
Lagos , Rios , China , Matéria Orgânica Dissolvida , Humanos , Lagos/química , Lignina , Polifenóis , Sulfetos , Água
5.
J Stroke Cerebrovasc Dis ; 29(8): 104956, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32689646

RESUMO

BACKGROUND AND PURPOSE: Brainstem hemorrhage (BSH) is the most devastating subtype of intracerebral hemorrhage (ICH) with the highest mortality ranging from 56 % to 61.2 %. However, there is no effective medical or surgical therapy to improve its outcomes in clinic to date due to lack of understanding of its injury mechanisms. Herein, we explored the brainstem iron overload and injury in a rat model of BSH. METHODS: Neurological scores were examined on day 1, 3, and 7 after modeling, and mortality of the rats was recorded to draft a survival curve. Rats were monitored by MRI using T2 and susceptibility weighted imaging (SWI) before sacrifice for examination of histology and immunofluorescence on day 1, 3, and 7. RESULTS: BSH rats had a high mortality of 56 % and demonstrated the severe neurological deficits mimicking the clinical conditions. SWI showed that the same increasing tendency in change of hypointense area with that in iron deposition by Perls staining from day 1 to 7. Expression of heme oxygenase 1 (HO-1) and generation of reactive oxygen species (ROS) had similar tendency and both peaked on day 3. Neuronal degeneration occurred and stayed elevated from day 1 to 7, while myelin sheath injury was initially observed on day 1 but without significant difference within 7 days. CONCLUSIONS: The time courses of erythrocyte lysis, HO-1 expression, iron deposition and ROS generation are related to each other after BSH. Besides, brainstem injury including neuronal degeneration and myelin damage were observed and discussed.


Assuntos
Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/metabolismo , Hemorragia Cerebral/metabolismo , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Animais , Tronco Encefálico/patologia , Tronco Encefálico/fisiopatologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Modelos Animais de Doenças , Eritrócitos/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Hemólise , Sobrecarga de Ferro/patologia , Sobrecarga de Ferro/fisiopatologia , Masculino , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Degeneração Neural , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
8.
World Neurosurg ; 128: e895-e904, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31082547

RESUMO

BACKGROUND: Brainstem hemorrhage (BSH) is the most dangerous and devastating subtype of intracerebral hemorrhage and is associated with high morbidity and mortality. However, to date, no effective prevention methods or specific therapies have been available to improve its clinical outcomes. We preliminarily explored the efficacy of deferoxamine (DFO), a clinical chelator known for its iron-scavenging activities, in a rat model of BSH induced with collagenase infusion. METHODS: DFO or saline was administrated 6 hours after BSH induction and then every 12 hours for ≤7 days. The survival curve of the rats was created, and the neurological scores were examined on days 1, 3, and 7 after BSH. The rats were sacrificed after 1, 3, and 7 days of DFO treatment for histological examination and immunohistochemistry. RESULTS: The results showed that administration of DFO delayed erythrocytes lysis, reduced iron deposition, reduced reactive oxygen species generation, reduced heme oxygenase-1 expression, and alleviated brain injury such as neuron degeneration and myelin sheath injury. However, DFO did not improve the survival rate and neurobehavioral outcomes in this model. CONCLUSIONS: Administration of DFO had limited therapeutic effects on collagenase-induced brainstem hemorrhage in rats. Some potential explanations were proposed, and more preclinical work is required to clarify the controversial curative effect of DFO in ICH.


Assuntos
Hemorragia do Tronco Encefálico Traumática/complicações , Quelantes/uso terapêutico , Desferroxamina/uso terapêutico , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Animais , Hemorragia do Tronco Encefálico Traumática/induzido quimicamente , Colagenases , Heme Oxigenase-1/metabolismo , Imuno-Histoquímica , Masculino , Bainha de Mielina/patologia , Degeneração Neural/prevenção & controle , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA