Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 18(2): 333-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34676977

RESUMO

This review is part of a series synthesizing peer-reviewed literature from the past decade on environmental monitoring in the oil sands region (OSR) of northeastern Alberta. It focuses on atmospheric emissions, air quality, and deposition in and downwind of the OSR. Most published monitoring and research activities were concentrated in the surface-mineable region in the Athabasca OSR. Substantial progress has been made in understanding oil sands (OS)-related emission sources using multiple approaches: airborne measurements, satellite measurements, source emission testing, deterministic modeling, and source apportionment modeling. These approaches generally yield consistent results, indicating OS-related sources are regional contributors to nearly all air pollutants. Most pollutants exhibit enhanced air concentrations within ~20 km of surface-mining activities, with some enhanced >100 km downwind. Some pollutants (e.g., sulfur dioxide, nitrogen oxides) undergo transformations as they are transported through the atmosphere. Deposition rates of OS-related substances primarily emitted as fugitive dust are enhanced within ~30 km of surface-mining activities, whereas gaseous and fine particulate emissions have a more diffuse deposition enhancement pattern extending hundreds of kilometers downwind. In general, air quality guidelines are not exceeded, although these single-pollutant thresholds are not comprehensive indicators of air quality. Odor events have occurred in communities near OS industrial activities, although it can be difficult to attribute events to specific pollutants or sources. Nitrogen, sulfur, polycyclic aromatic compounds (PACs), and base cations from OS sources occur in the environment, but explicit and deleterious responses of organisms to these pollutants are not as apparent across all study environments; details of biological monitoring are discussed further in other papers in this special series. However, modeling of critical load exceedances suggests that, at continued emission levels, ecological change may occur in future. Knowledge gaps and recommendations for future work to address these gaps are also presented. Integr Environ Assess Manag 2022;18:333-360. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Alberta , Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Compostos Orgânicos
2.
Integr Environ Assess Manag ; 18(2): 407-427, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34224211

RESUMO

Historically, environmental research and monitoring in the Alberta oil sands region (OSR) located in northeastern Alberta, Canada, have largely neglected, meaningful Indigenous participation. Through years of experience on the land, Indigenous knowledge (IK) holders recognize change on the landscape, drawing on inextricable links between environmental health and practicing traditional rights. The cumulative impacts of crude oil production are of great concern to Indigenous communities, and monitoring initiatives in the OSR provide unique opportunities to develop Indigenous community-based monitoring (ICBM). A review of ICBM literature on the OSR from 2009 to 2020 was completed. Based on this review, we identify best practices in ICBM and propose governance structures and a framework to support meaningful integration of ICBM into regulatory environmental monitoring. Because it involves multimedia monitoring and produces data and insights that integrate many aspects of the environment, ICBM is important for natural science research. ICBM can enhance the relevance of environmental monitoring by examining relationships between physical and chemical stressors and culturally relevant indicators, so improving predictions of long-term changes in the environment. Unfortunately, many Indigenous communities distrust researchers owing to previous experiences of exploitive use of IK. In the present paper, we recommend important practices for the integration of IK into regional environmental monitoring programs. ICBM is important to communities because it includes conditions to which communities can exercise traditional rights, and highlight how industrial activities affect this ability. Equally important, ICBM can generate a resurgence of Indigenous languages and subsequently traditional practices; it can also revive the connection with traditional lands and improve food security. Integr Environ Assess Manag 2022;18:407-427. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Alberta , Ecotoxicologia , Óleo de Brassica napus
3.
Integr Environ Assess Manag ; 18(2): 428-441, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34331737

RESUMO

The desire to document and understand the cumulative implications of oil sands (OS) development in the ambient environment of northeastern Alberta has motivated increased investment and release of information in the past decade. Here, we summarize the knowledge presented in the theme-based review papers in this special series, including air, surface water, terrestrial biology, and Indigenous community-based monitoring in order to (1) consolidate knowledge gained to date, (2) highlight key commonalities and gaps, and (3) leverage this knowledge to assess the state of integration in environmental monitoring efforts in the OS region and suggest next steps. Among air, water, and land studies, the individual reviews identified a clear focus on describing stressors, including primarily (1) contaminant emission, transport, transformation, deposition, and exposure, and (2) landscape disturbance. These emphases are generally partitioned by theme; air and water studies focus heavily on chemical stressors, whereas terrestrial monitoring focuses on biological change and landscape disturbance. Causal attribution is often stated as a high priority objective across all themes. However, studies often rely on spatial proximity to attribute cause to industrial activity, leaving causal attribution potentially confounded by spatial covariance of both OS- and non-OS-related stressors in the region, and by the complexity of interacting pathways between sources of environmental change and ecological receptors. Geospatial and modeling approaches are common across themes and may represent clear integration opportunities, particularly to help inform investigation-of-cause, but are not a replacement for robust field monitoring designs. Cumulative effects assessment remains a common focus of regional monitoring, but is limited in the peer-reviewed literature, potentially reflecting a lack of integration among monitoring efforts beyond narrow integrated interpretations of results. Addressing this requires greater emphasis on a priori integrated data collection and integrated analyses focused on the main residual exposure pathways, such as atmospheric deposition. Integr Environ Assess Manag 2022;18:428-441. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Alberta , Ecotoxicologia , Monitoramento Ambiental/métodos
4.
Integr Environ Assess Manag ; 18(2): 361-387, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34546629

RESUMO

We synthesize the information available from the peer-reviewed literature on the ecological status of lakes and rivers in the oil sands region (OSR) of Canada. The majority of the research from the OSR has been performed in or near the minable region and examines the concentrations, flux, or enrichment of contaminants of concern (CoCs). Proximity to oil sands facilities and the beginning of commercial activities tend to be associated with greater estimates of CoCs across studies. Research suggests the higher measurements of CoCs are typically associated with wind-blown dust, but other sources also contribute. Exploratory analyses further suggest relationships with facility production and fuel use data. Exceedances of environmental quality guidelines for CoCs are also reported in lake sediments, but there are no indications of toxicity including those within the areas of the greatest atmospheric deposition. Instead, primary production has increased in most lakes over time. Spatial differences are observed in streams, but causal relationships with industrial activity are often confounded by substantial natural influences. Despite this, there may be signals associated with site preparation for new mines, potential persistent differences, and a potential effect of petroleum coke used as fuel on some indices of health in fish captured in the Steepbank River. There is also evidence of improvements in the ecological condition of some rivers. Despite the volume of material available, much of the work remains temporally, spatially, or technically isolated. Overcoming the isolation of studies would enhance the utility of information available for the region, but additional recommendations for improving monitoring can be made, such as a shift to site-specific analyses in streams and further use of industry-reported data. Integr Environ Assess Manag 2022;18:361-387. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Rios , Poluentes Químicos da Água , Alberta , Animais , Canadá , Monitoramento Ambiental , Lagos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
5.
Integr Environ Assess Manag ; 18(2): 319-332, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34241945

RESUMO

Over the past decades, concerns regarding the local and cumulative impacts of oil sands development have been increasing. These concerns reflect the industry's emissions, land disturbance, water use, and the resulting impacts to Indigenous Rights. Effective environmental management is essential to address and ultimately manage these concerns. A series of ambient regional monitoring programs in the oil sands region (OSR) have struggled with scope and governance. In the last 10 years, monitoring has evolved from a regulatory-driven exercise implemented by industry into a focused, collaborative, multistakeholder program that attempts to integrate rigorous science from a multitude of disciplines and ways of knowing. Monitoring in the region continues to grapple with leadership, governance, data management, scope, and effective analysis and reporting. This special series, "A Decade of Research and Monitoring in the Oil Sands Region of Alberta, Canada," provides a series of critical reviews that synthesize 10 years of published monitoring results to identify patterns of consistent ecological responses or effects, significant gaps in knowledge, and recommendations for improved monitoring, assessment, and management of the region. The special series considered over 300 peer-reviewed papers and represents the first integrated critical review of the published literature from the region. This introductory paper of the series introduces the history of ambient environmental monitoring in the OSR and discusses historic and ongoing challenges with the environmental monitoring effort. While significant progress has been made in areas of governance, expanded geographical scope, and inclusion of Indigenous communities in monitoring in the region, significant issues remain regarding a lack of integrated reporting on environmental conditions, public access to data, and continuity of monitoring efforts over time. Integr Environ Assess Manag 2022;18:319-332. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Alberta , Monitoramento Ambiental/métodos
6.
Integr Environ Assess Manag ; 18(2): 388-406, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34510725

RESUMO

In the past decade, a large volume of peer-reviewed papers has examined the potential impacts of oil and gas resource extraction in the Canadian oil sands (OS). A large proportion focuses on terrestrial biology: wildlife, birds, and vegetation. We provide a qualitative synthesis of the condition of the environment in the oil sands region (OSR) from 2009 to 2020 to identify gaps and progress cumulative effects assessments. Our objectives were to (1) qualitatively synthesize and critically review knowledge from the OSR; (2) identify consistent trends and generalizable conclusions; and (3) pinpoint gaps in need of greater monitoring or research effort. We visualize knowledge and terrestrial monitoring foci by allocating papers to a conceptual model for the OS. Despite a recent increase in publications, focus has remained concentrated on a few key stressors, especially landscape disturbance, and a few taxa of interest. Stressor and response monitoring is well represented, but direct monitoring of pathways (linkages between stressors and responses) is limited. Important knowledge gaps include understanding effects at multiple spatial scales, mammal health effects monitoring, focused monitoring of local resources important to Indigenous communities, and geospatial coverage and availability, including higher attribute resolution in human footprint, comprehensive land cover mapping, and up-to-date LiDAR coverage. Causal attribution based on spatial proximity to operations or spatial orientation of monitoring in the region is common but may be limited in the strength of inference that it provides. Integr Environ Assess Manag 2022;18:388-406. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Campos de Petróleo e Gás , Alberta , Animais , Aves , Ecotoxicologia
8.
Integr Environ Assess Manag ; 9(3): 426-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22927161

RESUMO

A consistent methodology for assessing the accumulating effects of natural and manmade change on riverine systems has not been developed for a whole host of reasons including a lack of data, disagreement over core elements to consider, and complexity. Accumulated state assessments of aquatic systems is an integral component of watershed cumulative effects assessment. The Yukon River is the largest free flowing river in the world and is the fourth largest drainage basin in North America, draining 855,000 km(2) in Canada and the United States. Because of its remote location, it is considered pristine but little is known about its cumulative state. This review identified 7 "hot spot" areas in the Yukon River Basin including Lake Laberge, Yukon River at Dawson City, the Charley and Yukon River confluence, Porcupine and Yukon River confluence, Yukon River at the Dalton Highway Bridge, Tolovana River near Tolovana, and Tanana River at Fairbanks. Climate change, natural stressors, and anthropogenic stresses have resulted in accumulating changes including measurable levels of contaminants in surface waters and fish tissues, fish and human disease, changes in surface hydrology, as well as shifts in biogeochemical loads. This article is the first integrated accumulated state assessment for the Yukon River basin based on a literature review. It is the first part of a 2-part series. The second article (Dubé et al. 2013a, this issue) is a quantitative accumulated state assessment of the Yukon River Basin where hot spots and hot moments are assessed outside of a "normal" range of variability.


Assuntos
Meio Ambiente , Monitoramento Ambiental/métodos , Doenças dos Peixes/epidemiologia , Peixes/fisiologia , Água Doce/análise , Qualidade da Água , Alaska/epidemiologia , Migração Animal , Animais , Colúmbia Britânica/epidemiologia , Mudança Climática , Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Água Doce/microbiologia , Água Doce/parasitologia , Humanos , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Estações do Ano , Movimentos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Yukon/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA