Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 39(3): 287-297, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477767

RESUMO

Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. By targeted gene sequencing analysis, we identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22 variant (c.443C>T or c.446G>A), although the spinal involvement appeared later and was less severe in patients with a recessive variant. Relatives harboring the c.146G>A variant at the heterozygous state were asymptomatic. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. RT-PCR and western blot analyses demonstrated that both dominant and recessive KIF22 variants do not affect KIF22 mRNA and protein expression in patient fibroblasts compared to controls. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations (CMD), related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts. Compared to controls, DMMB assay showed a significant decrease of total sulfated proteoglycan content in culture medium but not in the cell layer, and immunofluorescence demonstrated a strong reduction of staining for chondroitin sulfates but not for heparan sulfates, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis and place the lepto-SEMDJL in the CMD spectrum.


Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. We identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations, related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts and showed a significant decrease of total sulfated proteoglycan content in culture medium, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis.


Assuntos
Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Cinesinas/genética , Osteocondrodisplasias/genética , Família , Proteínas de Ligação a DNA
2.
Hum Mol Genet ; 31(22): 3777-3788, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660865

RESUMO

Mutations in the fibrillin-1 (FBN1) gene are responsible for the autosomal dominant form of geleophysic dysplasia (GD), which is characterized by short stature and extremities, thick skin and cardiovascular disease. All known FBN1 mutations in patients with GD are localized within the region encoding the transforming growth factor-ß binding protein-like 5 (TB5) domain of this protein. Herein, we generated a knock-in mouse model, Fbn1Y1698C by introducing the p.Tyr1696Cys mutation from a patient with GD into the TB5 domain of murine Fbn1 to elucidate the specific role of this domain in endochondral ossification. We found that both Fbn1Y1698C/+ and Fbn1Y1698C/Y1698C mice exhibited a reduced stature reminiscent of the human GD phenotype. The Fbn1 point mutation introduced in these mice affected the growth plate formation owing to abnormal chondrocyte differentiation such that mutant chondrocytes failed to establish a dense microfibrillar network composed of FBN1. This original Fbn1 mutant mouse model offers new insight into the pathogenic events underlying GD. Our findings suggest that the etiology of GD involves the dysregulation of the extracellular matrix composed of an abnormal FBN1 microfibril network impacting the differentiation of the chondrocytes.


Assuntos
Doenças do Desenvolvimento Ósseo , Fibrilina-1 , Deformidades Congênitas dos Membros , Síndrome de Marfan , Animais , Humanos , Camundongos , Doenças do Desenvolvimento Ósseo/metabolismo , Fibrilina-1/genética , Deformidades Congênitas dos Membros/genética , Síndrome de Marfan/genética , Mutação , Osteogênese/genética
3.
Hum Genet ; 141(7): 1287-1298, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34999954

RESUMO

SLC10A7, encoded by the so-called SLC10A7 gene, is the seventh member of a human sodium/bile acid cotransporter family, known as the SLC10 family. Despite similarities with the other members of the SLC10 family, SLC10A7 does not exhibit any transport activity for the typical SLC10 substrates and is then considered yet as an orphan carrier. Recently, SLC10A7 mutations have been identified as responsible for a new Congenital Disorder of Glycosylation (CDG). CDG are a family of rare and inherited metabolic disorders, where glycosylation abnormalities lead to multisystemic defects. SLC10A7-CDG patients presented skeletal dysplasia with multiple large joint dislocations, short stature and amelogenesis imperfecta likely mediated by glycosaminoglycan (GAG) defects. Although it has been demonstrated that the transporter and substrate specificities of SLC10A7, if any, differ from those of the main members of the protein family, SLC10A7 seems to play a role in Ca2+ regulation and is involved in proper glycosaminoglycan biosynthesis, especially heparan-sulfate, and N-glycosylation. This paper will review our current knowledge on the known and predicted structural and functional properties of this fascinating protein, and its link with the glycosylation process.


Assuntos
Amelogênese Imperfeita , Defeitos Congênitos da Glicosilação , Osteocondrodisplasias , Simportadores , Defeitos Congênitos da Glicosilação/genética , Glicosaminoglicanos/genética , Glicosilação , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio
4.
Genes (Basel) ; 12(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828260

RESUMO

Proteoglycans consist of proteins linked to sulfated glycosaminoglycan chains. They constitute a family of macromolecules mainly involved in the architecture of organs and tissues as major components of extracellular matrices. Some proteoglycans also act as signaling molecules involved in inflammatory response as well as cell proliferation, adhesion, and differentiation. Inborn errors of proteoglycan metabolism are a group of orphan diseases with severe and irreversible skeletal abnormalities associated with multiorgan impairments. Identifying the gene variants that cause these pathologies proves to be difficult because of unspecific clinical symptoms, hardly accessible functional laboratory tests, and a lack of convenient blood biomarkers. In this review, we summarize the molecular pathways of proteoglycan biosynthesis, the associated inherited syndromes, and the related biochemical screening techniques, and we focus especially on a circulating proteoglycan called bikunin and on its potential as a new biomarker of these diseases.


Assuntos
alfa-Globulinas/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Proteoglicanas/biossíntese , alfa-Globulinas/análise , alfa-Globulinas/fisiologia , Biomarcadores/sangue , Erros Inatos do Metabolismo dos Carboidratos/sangue , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/tendências , Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/tendências , Humanos , Laboratórios , Programas de Rastreamento/métodos , Programas de Rastreamento/tendências , Redes e Vias Metabólicas/genética
5.
Nat Commun ; 9(1): 3087, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082715

RESUMO

Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7-/- mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7-/- mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development.


Assuntos
Amelogênese Imperfeita/genética , Doenças do Desenvolvimento Ósseo/genética , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Animais , Peso Corporal , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Modelos Animais de Doenças , Eletroforese , Exoma , Glicoproteínas/química , Células HEK293 , Humanos , Lactente , Camundongos , Camundongos Knockout , Osteocondrodisplasias/genética
7.
PLoS One ; 11(10): e0165153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27798666

RESUMO

Neuropilin-1 (NRP1) is a transmembrane protein acting as a co-receptor for several growth factors and interacting with other proteins such as integrins and plexins/semaphorins. It is involved in axonal development, angiogenesis and cancer progression. Its primary mRNA is subjected to alternative splicing mechanisms generating different isoforms, some of which lack the transmembrane domain and display antagonist properties to NRP1 full size (FS). NRP1 is further post-translationally modified by the addition of glycosaminoglycans (GAG) side chains through an O-glycosylation site at serine612. Here, we characterized a novel splice variant which has never been investigated, NRP1-Δ7, differing from the NRP1-FS by a deletion of 7 amino acids occurring two residues downstream of the O-glycosylation site. This short sequence contains two aspartic residues critical for efficient glycosylation. As expected, the high molecular weight products appearing as a smear in SDS-PAGE and reflecting the presence of GAG in NRP1-FS were undetectable in the NRP1-Δ7 protein. NRP1-Δ7 mRNA was found expressed at an appreciable level, between 10 and 30% of the total NRP1, by various cells lines and tissues from human and murine origin. To investigate the biological properties of this isoform, we generated prostatic (PC3) and breast (MDA-MB-231) cancer cells able to express recombinant NRP1-FS or NRP1-Δ7 in a doxycycline-inducible manner. Cells with increased expression of NRP1-Δ7 were characterized in vitro by a significant reduction of proliferation, migration and anchorage-independent growth, while NRP1-FS had the expected opposite "pro-tumoral" effects. Upon VEGF-A165 treatment, a lower internalization rate was observed for NRP1-Δ7 than for NRP1-FS. Finally, we showed that NRP1-Δ7 inhibited growth of prostatic tumors and their vascularization in vivo. This report identifies NRP1-Δ7 as a splice variant displaying anti-tumorigenic properties in vitro and in vivo, emphasizing the need to consider this isoform in future studies.


Assuntos
Processamento Alternativo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Glicosaminoglicanos/deficiência , Neuropilina-1/genética , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação , Xenoenxertos , Humanos , Camundongos , Modelos Animais , Neovascularização Patológica/genética , Especificidade de Órgãos/genética , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
8.
Angiogenesis ; 19(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26446156

RESUMO

The only documented activity of a subclass of ADAMTS proteases comprising ADAMTS2, 3 and 14 is the cleavage of the aminopropeptide of fibrillar procollagens. A limited number of in vitro studies suggested that ADAMTS3 is mainly responsible for procollagen II processing in cartilage. Here, we created an ADAMTS3 knockout mouse (Adamts3(-/-)) model to determine in vivo the actual functions of ADAMTS3. Heterozygous Adamts3(+/-) mice were viable and fertile, but their intercrosses demonstrated lethality of Adamts3(-/-) embryos after 15 days of gestation. Procollagens I, II and III processing was unaffected in these embryos. However, a massive lymphedema caused by the lack of lymphatics development, an abnormal blood vessel structure in the placenta and a progressive liver destruction were observed. These phenotypes are most probably linked to dysregulation of the VEGF-C pathways. This study is the first demonstration that an aminoprocollagen peptidase is crucial for developmental processes independently of its primary role in collagen biology and has physiological functions potentially involved in several human diseases related to angiogenesis and lymphangiogenesis.


Assuntos
Proteínas ADAM/metabolismo , Embrião de Mamíferos/metabolismo , Linfangiogênese , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Proteínas ADAM/deficiência , Animais , Vasos Sanguíneos/patologia , Cartilagem/patologia , Colágeno/metabolismo , Edema/patologia , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Imuno-Histoquímica , Fígado/embriologia , Fígado/patologia , Camundongos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/patologia , Gravidez , Processamento de Proteína Pós-Traducional , Pele/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo
9.
Mol Biol Cell ; 22(17): 3263-75, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21757538

RESUMO

RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor α (RhoGDIα) and the overexpression of a RhoA mutant unable to bind RhoGDIα suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIα. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Osteonectina/metabolismo , Interferência de RNA , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rho de Ligação ao GTP/genética , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho , Quinases Associadas a rho/metabolismo , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico , Proteína rhoA de Ligação ao GTP/genética , Proteína de Ligação a GTP rhoC
10.
J Cell Biol ; 179(6): 1261-73, 2007 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-18086921

RESUMO

Ultraviolet B and genotoxic drugs induce the expression of a vascular endothelial growth factor A (VEGF-A) splice variant (VEGF111) encoded by exons 1-4 and 8 in many cultured cells. Although not detected in a series of normal human and mouse tissue, VEGF111 expression is induced in MCF-7 xenografts in nude mice upon treatment by camptothecin. The skipping of exons that contain proteolytic cleavage sites and extracellular matrix-binding domains makes VEGF111 diffusible and resistant to proteolysis. Recombinant VEGF111 activates VEGF receptor 2 (VEGF-R2) and extracellularly regulated kinase 1/2 in human umbilical vascular endothelial cells and porcine aortic endothelial cells expressing VEGF-R2. The mitogenic and chemotactic activity and VEGF111's ability to promote vascular network formation during embyonic stem cell differentiation are similar to those of VEGF121 and 165. Tumors in nude mice formed by HEK293 cells expressing VEGF111 develop a more widespread network of numerous small vessels in the peritumoral tissue than those expressing other isoforms. Its potent angiogenic activity and remarkable resistance to proteolysis makes VEGF111 a potential adverse factor during chemotherapy but a beneficial therapeutic tool for ischemic diseases.


Assuntos
Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Camptotecina/farmacologia , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Glicosilação , Humanos , Hipoglicemia/metabolismo , Hipóxia/metabolismo , Camundongos , Camundongos Nus , Mutagênicos/farmacologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos/metabolismo , Raios Ultravioleta , Fator A de Crescimento do Endotélio Vascular/genética
11.
J Biol Chem ; 280(41): 34397-408, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16046392

RESUMO

Processing of fibrillar collagens is required to generate collagen monomers able to self-assemble into elongated and cylindrical collagen fibrils. ADAMTS-2 belongs to the "A disintegrin and metalloproteinase with thrombospondin type 1 motifs" (ADAMTS) family. It is responsible for most of the processing of the aminopropeptide of type I procollagen in the skin, and it also cleaves type II and type III procollagens. ADAMTS are complex secreted enzymes that are implicated in various physiological and pathological processes. Despite accumulating evidence indicating that their activity is regulated by ancillary domains, additional information is required for a better understanding of the specific function of each domain. We have generated 17 different recombinant forms of bovine ADAMTS-2 and characterized their processing, activity, and cleavage specificity. The results indicated the following: (i) activation of the ADAMTS-2 zymogen involves several cleavages, by proprotein convertases and C-terminal processing, and generates at least seven distinct processed forms; (ii) the C-terminal domain negatively regulates enzyme activity, whereas two thrombospondin type 1 repeats are enhancer regulators; (iii) the 104-kDa form displays the highest aminoprocollagen peptidase activity on procollagen type I; (iv) ADAMTS-2 processes the aminopropeptide of alpha1 type V procollagen homotrimer at the end of the variable domain; and (v) the cleaved sequence (PA) is different from the previously described sites ((P/A)Q) for ADAMTS-2, redefining its cleavage specificity. This finding and the existence of multiple processed forms of ADAMTS-2 strongly suggest that ADAMTS-2 may be involved in function(s) other than processing of fibrillar procollagen types I-III.


Assuntos
Proteínas ADAM/química , Colágeno Tipo III/química , Colágeno Tipo II/química , Colágeno Tipo I/química , Colágeno Tipo V/química , Regulação Enzimológica da Expressão Gênica , Pró-Colágeno N-Endopeptidase/química , Proteínas ADAMTS , Proteína ADAMTS4 , Motivos de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Células COS , Catálise , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Colágeno/química , Dimerização , Eletroforese em Gel de Poliacrilamida , Fibroblastos/metabolismo , Glicosilação , Humanos , Camundongos , Modelos Genéticos , Peptídeos/química , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes/química , Temperatura , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA