Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Immunol Infect ; 56(1): 163-171, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35835687

RESUMO

BACKGROUND: Available therapeutics for visceral leishmaniasis (VL), a deadly parasitic infection, are usually associated with inadequate efficacy and adverse aftereffects. Further, the primary site of Leishmania parasite are host macrophages resulting in compromised immunity; ensuing marked T-cell immunosuppression. Such settings emphasize the exploration of chemo-immunotherapeutic strategies for improvising the infected person's immune status with better resolution of infection. METHODS: Present work employs the immunization of Leishmania-infected hamsters with Leishmania-derived recombinant aldolase (rLdAld) and enolase (rLdEno) proteins in consort with the sub-optimal dose of Ambisome (2.5 mg/kg). After the completion of immunization, hamsters were sacrificed on day 60 and 90 post infection and different organ samples were collected to perform immunological assay for evaluating the therapeutic efficacy and modulation in protective cellular immune responses. RESULTS: Combining these proteins, particularly rLdAld with Ambisome (2.5 mg/kg), has significantly reduced the parasitic load (∼80%) with remarkable enhancement in DTH and lymphoproliferative responses compared to the infected control and only Ambisome treated groups. Moreover, cytokine levels at RNA and protein levels were noticed to be inclined towards Th-1 phenotype through up-regulation of IFN-γ and TNF-α with significant down-regulation in IL-10 and TGF-ß expression, an indication towards the generation of protective immunity against experimental VL. CONCLUSION: Our experimental findings demonstrated that the chemo-immunotherapeutic approach could be an effective way of controlling human VL infection at minimal dosages of antileishmanial with reduced side-effects and propensity of drug resistance emergence.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Cricetinae , Animais , Humanos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/farmacologia , Frutose-Bifosfato Aldolase/uso terapêutico , Imunização , Citocinas
2.
Microb Pathog ; 166: 105457, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35219843

RESUMO

Leishmania donovani pathogenicity is closely linked to its ability to live and replicate in the hostile environment of macrophages. All protozoan parasites, including Leishmania, are unable to synthesize purines de novo, and nucleoside diphosphate kinases (NDKs) are enzymes required to preserve the intracellular nucleoside phosphate equilibrium. For some pathogens, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor mediated, ATP-induced death of infected macrophages. Here, Leishmanaia donovani nucleoside diphosphate kinase (LdNDKb) was cloned, expressed and purified by Ni2+-NTA affinity chromatography to elucidate its biological significance. The presence of secreted form of LdNDKb in the medium was confirmed by Western blot analysis. Interestingly, cellular localization by confocal microscopy showed that this protein was localized in the nucleus, inner leaflet of membrane and on the flagella of this parasite which indicates its multiple role in the life cycle of Leishmania donovani. Its possibility to bind with DNA was confirmed by gel retardation assay and electrophoretic mobility shift assay (EMSA) which show the binding with linear and supercoiled is not sequence specific. Further, treatment of J774 macrophages with recombinant LdNdKb and periodate oxidized ATP - a P2X7 receptor antagonist, inhibited ATP-induced cytolysis in vitro, as determined by lactate dehydrogenise release from J774 macrophages. Thus, LdNDKb prevents ATP-mediated host-cell plasma membrane permeabilization by hydrolyzing extracellular ATP, thereby, preserving the integrity of the host cells for the benefit of the parasite. This study indicates that LdNDKb could be explored for its potentiality as a drug/vaccine target against visceral leishmaniasis.


Assuntos
Leishmania donovani , Núcleosídeo-Difosfato Quinase , Trifosfato de Adenosina/metabolismo , Morte Celular , Macrófagos/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/metabolismo
3.
Biomed Res Int ; 2021: 8845826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095312

RESUMO

Immunotherapy, a treatment based on host immune system activation, has been shown to provide a substitute for marginally effective conventional chemotherapy in controlling visceral leishmaniasis (VL), the deadliest form of leishmaniasis. As the majority of endemic inhabitants exhibit either subclinical or asymptomatic infection which often develops into the active disease state, therapeutic intervention seems to be an important avenue for combating infections by stimulating the natural defense system of infected individuals. With this perspective, the present study focuses on two immunodominant Leishmania (L.) donovani antigens (triosephosphate isomerase and enolase) previously proved to be potent prophylactic VL vaccine candidates, for generating a recombinant chimeric antigen. This is based on the premise that in a heterogeneous population, a multivalent antigen vaccine would be required for an effective response against leishmaniasis (a complex parasitic disease). The resulting molecule rLdT-E chimeric protein was evaluated for its immunogenicity and immunotherapeutic efficacy. A Th1 stimulating adjuvant BCG was employed with the protein which showed a remarkable 70% inhibition of splenic parasitic multiplication positively correlated with boosted Th1 dominant immune response against lethal L. donovani challenge in hamsters as evidenced by high IFN-γ and TNF-α and low IL-10. In addition, immunological analysis of antibody subclass presented IgG2-based humoral response besides considerable delayed-type hypersensitivity and lymphocyte proliferative responses in rLdT-E/BCG-treated animals. Our observations indicate the potential of the chimera towards its candidature for an effective vaccine against Leishmania donovani infection.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Células Th1 , Animais , Cricetinae , Feminino , Imunidade Adaptativa/imunologia , Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Fatores Imunológicos/metabolismo , Imunoterapia/métodos , Leishmania donovani/genética , Leishmania donovani/imunologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/terapia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/imunologia , Linfócitos/metabolismo , Fosfopiruvato Hidratase/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Células Th1/imunologia , Triose-Fosfato Isomerase/imunologia , Vacinas/farmacologia
4.
Parasite Immunol ; 43(1): e12783, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734677

RESUMO

AIM: Leishmania donovani, the causative agent for visceral leishmaniasis (VL), modulates host monocytes/macrophages to ensure its survival. However, knowledge regarding the host-parasite interactions underpinning the disease remains limited. As disease progression is associated with polarization of monocytes/macrophages towards M2, which is regulated by cytokines IL-4/IL-13 and IL-10, this study evaluated the status of key IL-4- and IL-10 driven markers in experimental models of VL, as also evaluated their correlation, if any, with parasite load. METHODS: In liver and splenic tissues from L donovani-infected hamsters and BALB/c mice, the parasite burden was determined along with mRNA expression of IL-4-driven markers, that is CD206, Arginase-I, CCL17, CCL22, PPAR-γ, STAT6, KLF4, FIZZ1 and YM1 along with IL-10-driven markers, CXCL13, IL-10, TGF-ß, VDR, CCR2 and CYP27A1. RESULTS: The mRNA expression of IL-4- and IL-10-driven markers was enhanced in both models, but only in the hamster model, the splenic tissues demonstrated a positive correlation between all the IL-10-driven markers and parasite load. CONCLUSIONS: Contrary to human VL, both models demonstrated an increased expression of IL-4- and IL-10-driven markers.


Assuntos
Interleucina-10/imunologia , Interleucina-4/imunologia , Leishmaniose Visceral/diagnóstico , RNA Mensageiro/genética , Animais , Cricetinae , Humanos , Interleucina-10/genética , Interleucina-4/genética , Fator 4 Semelhante a Kruppel , Leishmania donovani/imunologia , Leishmaniose Visceral/parasitologia , Fígado/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Monócitos/imunologia , Monócitos/parasitologia , Carga Parasitária , RNA Mensageiro/biossíntese , Baço/parasitologia
5.
Parasite Immunol ; 42(11): e12729, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415855

RESUMO

Visceral leishmaniasis (VL) represents one of the most challenging infectious diseases worldwide. The reason that once infected, patient develops immunity against Leishmania parasite has paved way to develop prophylactic vaccines against disease, but only some of these have moved ahead for clinical trials. Herein, the study to explore novel and potential vaccine candidates was extended to pathogenic form of parasite, that is, amastigote form which is less explored due to complexity of its purification process. Methods and results. Classical protocol of purification of splenic amastigotes was modified to obtain highly pure amastigotes which was confirmed by Western blotting in support with proteomics studies. Fractionation and sub-fractionation of purified splenic amastigotes revealed four sub-fractions, belonging to 97 to 68 kDa and 68 to 43 kDa ranges, which showed long-lasting protection with remarkable Th1-type cellular responses in hamsters vaccinated with these sub-fractions (LTT, NO, QRT-PCR). Further proteomics analysis, to identify and understand the precise nature and function of these protective protein sub-fractions, identified a total of 47 proteins including twenty-five hypothetical proteins/unknowns. Amastigote stage has potential Th1-stimulatory vaccine candidates, notably, among identified proteins, major were uncharacterized proteins/hypothetical proteins, which once characterized may serve as novel and potential vaccine candidates/drug targets.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Poliproteínas/imunologia , Vacinas Protozoárias/imunologia , Vacinação , Animais , Cricetinae , Humanos , Leishmaniose Visceral/parasitologia , Masculino , Mesocricetus , Poliproteínas/metabolismo , Proteômica , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Baço/parasitologia , Células Th1/imunologia
6.
Prostaglandins Other Lipid Mediat ; 147: 106390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726220

RESUMO

Infection with L. donovani affects mainly visceral organs. Importantly, the parasitic load differs in different visceral organs; therefore there is a need to understand the organ specific immune regulation, particularly in the spleen and liver. Comparative studies between these organs in Leishmania infected hamster (Mesocricetus auratus) are lacking. Our study highlights the importance of eicosanoids in the organ specific pathology of visceral leishmaniasis. Among other immune cells, macrophages (mφ) which harbor Leishmania parasite are major producers of eicosanoids. In this study, we intend to explore linkage between organ specific immune response and eicosanoids. We suggest that eicosanoids (early immune modulators) and their organ specific expressions, possibly tune the outcome of mφ differently at different sites. We have observed that liver showed better containment of parasitic load than spleen, where we have found higher expression of 5-lipoxygenase (5-LO) enzyme along with IL-12 and iNOS. However, in spleen, enzymes of the PGE2 pathway i.e. PGE2 synthases (cytosolic and microsomal) along with IL-10 were predominantly higher. To further corroborate our findings, in vitro assays were carried out using purified eicosanoids (LTB4 and PGE2) and the inhibitors of these pathways. Findings establish that the 5-lipoxygenase pathway (i.e. LTB4) is anti-parasitic and its inhibition increases the parasitic load (qPCR based kDNA detection). On the contrary, PGES pathway (i.e. PGE2) supports establishment of infection in mφ. Taken together, 5-LO pathway plays a protective role in liver during L. donovani infection. However, the PGES pathway favors the parasite growth, particularly in the spleen at a later stage.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Fígado/parasitologia , Carga Parasitária/métodos , Prostaglandina-E Sintases/metabolismo , Baço/parasitologia , Animais , Cricetinae , Dinoprostona/metabolismo , Eicosanoides/metabolismo , Feminino , Humanos , Fatores Imunológicos , Interleucina-10/metabolismo , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Baço/metabolismo
7.
Front Immunol ; 10: 288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873164

RESUMO

Development of a suitable vaccine against visceral leishmaniasis (VL), a fatal parasitic disease, is considered to be vital for maintaining the success of kala-azar control programs. The fact that Leishmania-infected individuals generate life-long immunity offers a viable proposition in this direction. Our prior studies demonstrated that T-helper1 (Th1) type of cellular response was generated by six potential recombinant proteins viz. elongation factor-2 (elF-2), enolase, aldolase, triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and p45, derived from a soluble antigenic fraction (89.9-97.1 kDa) of Leishmania (Leishmania) donovani promastigote, in treated Leishmania patients and golden hamsters and showed significant prophylactic potential against experimental VL. Moreover, since, it is well-known that our immune system, in general, triggers production of specific protective immunity in response to a small number of amino acids (peptide), this led to the identification of antigenic epitopes of the above-stated proteins utilizing immunoinformatics. Out of thirty-six, three peptides-P-10 (enolase), P-14, and P-15 (TPI) elicited common significant lymphoproliferative as well as Th1-biased cytokine responses both in golden hamsters and human subjects. Further, immunization with these peptides plus BCG offered 75% prophylactic efficacy with boosted cellular immune response in golden hamsters against Leishmania challenge which is indicative of their candidature as potential vaccine candidates.


Assuntos
Epitopos de Linfócito T/imunologia , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Proteínas de Protozoários/imunologia , Células Th1/imunologia , Animais , Cricetinae , Citocinas/sangue , Ativação Linfocitária , Mesocricetus , Baço/imunologia , Vacinação
8.
Pharm Res ; 35(3): 60, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29427248

RESUMO

PURPOSE: To fabricate, characterize and evaluate 3-O-sn-Phosphatidyl-L-serine (PhoS) anchored PLGA nanoparticles for macrophage targeted therapeutic intervention of VL. MATERIALS AND METHODS: PLGA-AmpB NPs were prepared by well-established nanoprecipitation method and decorated with Phos by thin film hydration method. Physico-chemical characterization of the formulation was done by Zetasizer nano ZS and atomic force microscopy. RESULTS: The optimized formulation (particle size, 157.3 ± 4.64 nm; zeta potential, - 42.51 ± 2.11 mV; encapsulation efficiency, ∼98%) showed initial rapid release up to 8 h followed by sustained release until 72 h. PhoS generated 'eat-me' signal driven augmented macrophage uptake, significant increase in in-vitro (with ∼82% parasite inhibition) and in-vivo antileishmanial activity with preferential accumulation in macrophage rich organs liver and spleen were found. Excellent hemo-compatibility justified safety profile of developed formulation in comparison to commercial formulations. CONCLUSION: The developed PhoS-PLGA-AmpB NPs have improved efficacy, and necessary stability which promisingly put itself as a better alternative to available commercial formulations for optimized treatment of VL.


Assuntos
Anfotericina B/administração & dosagem , Antiprotozoários/administração & dosagem , Portadores de Fármacos/química , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Animais , Linhagem Celular , Preparações de Ação Retardada/administração & dosagem , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Humanos , Leishmania donovani/efeitos dos fármacos , Macrófagos/parasitologia , Masculino , Camundongos , Nanopartículas/química , Fosfatidilserinas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Wistar , Resultado do Tratamento
9.
Parasitology ; 145(4): 508-526, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28691653

RESUMO

Despite immense efforts, vaccine against visceral leishmaniasis has yet not been developed. Earlier our proteomic study revealed a novel protein, cofactor-independent phoshoglycerate mutase (LdiPGAM), an important enzyme in glucose metabolism, in T helper cells type 1 (Th1) stimulatory region of soluble Leishmania donovani antigen. In this study, LdiPGAM was biochemically and molecularly characterized and evaluated for its immunogenicity and prophylactic efficacy against L. donovani. Immunogenicity of recombinant LdiPGAM (rLdiPGAM) was initially assessed in naïve hamsters immunized with it by analysing mRNA expression of inducible nitric oxide (NO) synthase (iNOS) and other Th1/T helper cells type 2 cytokines, which revealed an upregulation of Th1 cytokines along with iNOS. Immunogenicity of rLdiPGAM was further evaluated in lymphocytes of treated Leishmania-infected hamsters and peripheral blood mononuclear cells of Leishmania patients in clinical remission by various parameters, viz. lymphoproliferation assay and NO production (hamsters and patients) and levels of various cytokines (patients). rLdiPGAM induced remarkable Lymphoproliferative response and NO production in treated Leishmania-infected hamsters as well as in patients and increase in interferon gamma (IFN-γ), interleukin-12 (IL-12p40) responses in Leishmania patients in clinical remission. Vaccination with rLdiPGAM exerted considerable prophylactic efficacy (73%) supported by increase in mRNA expression of iNOS, IFN-γ and IL-12p40 with decrease in transforming growth factor beta and interleukin-10. Above results indicate the importance of rLdiPGAM protein as a potential vaccine candidate against visceral leishmaniasis.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania donovani/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Visceral/prevenção & controle , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/imunologia , Adolescente , Adulto , Animais , Antígenos de Protozoários/administração & dosagem , Antígenos de Protozoários/genética , Criança , Pré-Escolar , Cricetinae , Feminino , Humanos , Imunogenicidade da Vacina , Interferon gama/genética , Leishmania donovani/enzimologia , Vacinas contra Leishmaniose/administração & dosagem , Vacinas contra Leishmaniose/genética , Leishmaniose Visceral/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Óxido Nítrico , Fosfoglicerato Mutase/administração & dosagem , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Células Th1 , Células Th2 , Vacinação , Adulto Jovem
10.
Int J Biol Macromol ; 105(Pt 1): 1220-1231, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28780414

RESUMO

The goal of study was to develop micellar formulation of Amphotericin B (AmB) to improve its antileishmanial efficacy. AmB loaded pluronic F127 (PF 127) micelles were developed and coated with chitosan (Cs-PF-AmB-M) to accord immunoadjuvant and macrophage targeting properties. Hemolysis and cytotoxicity studies demonstrated that Cs-PF-AmB-M was 7.93 fold (at 20µg/ml AmB concentration) and 9.35 fold less hemolytic and cytotoxic, respectively in comparison to AmB suspension. Flow cytometry studies indicated that Cs-PF-FITC-M was 21.97 fold higher internalized byJ774A.1 macrophage in comparison to PF-FITC-M.Cs-PF-AmB-M showed excellent in-vitro (1.82 fold in compared to AmB suspension) and in-vivo (75.84±7.91% parasitic inhibition) antileishmanial activity against macrophage resident intracellular promastigotes and Leishmania donovani infected Syrian hamsters, respectively. Chitosan coating stimulated a Th1 immune response mediating auxiliary immunotherapeutic action as judged by in-vitro and in-vivo cytokine and mRNA expression. Toxicity studies demonstrated normal blood urea nitrogen (BUN) and plasma creatinine (PC) level and no sign of abnormal histopathology upon intravenous administration of micellar formulations. Pharmacokinetic profiling and tissue distribution studies indicated that AmB was preferentially localized in macrophage harboring tissue instead of kidney, thereby circumventing the characteristic nephrotoxicity. Conclusively, Cs-PF-AmB-M could be a viable alternative for the current immuno and chemotherapy of visceral leishmaniasis (VL).


Assuntos
Anfotericina B/química , Anfotericina B/farmacologia , Quitosana/química , Portadores de Fármacos/química , Leishmaniose Visceral/tratamento farmacológico , Micelas , Poloxâmero/química , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Animais , Antiprotozoários/química , Antiprotozoários/farmacocinética , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Linhagem Celular , Cricetinae , Citocinas/metabolismo , Portadores de Fármacos/toxicidade , Composição de Medicamentos , Feminino , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/fisiologia , Macrófagos/efeitos dos fármacos , Camundongos , Distribuição Tecidual
11.
Int J Biol Macromol ; 105(Pt 1): 625-637, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28716750

RESUMO

Lipid nanoparticles are stable, biodegradable and biocompatible carriers offering excellent therapeutic efficacy. Here, a novel effort has been made to develop Miltefosine (HePC- hexadecylphosphocholine) stabilized chitosan anchored nanostructured lipid carriers (NLC) of Amphotericin B (AmB) as co-delivery vehicle to enhance killing of L. donovani. The entrapment efficiency of AmB was achieved upto 85.3% for HePC-AmB-CNLCs with mean particle size of 150.8±8.4nm, and zeta potential value of +28.2±1.1mV, respectively. The cumulative amount of AmB released at even after the 24h was less than 65% from HePC-AmB-CNLCs and Tween-80-AmB-CNLCs. Intravenous administration of HePC-AmB-CNLCs revealed the significantly increased localization of AmB in both liver and spleen when estimated. FACS study represented enhanced uptake of FITC-HePC-CNLCs over FITC-HePC-NLCs in J774A.1 cell lines. Highly significant in vitro and in vivo anti-leishmanial activity (p<0.05 compared with Tween 80-AmB-CNLCs) was observed with HePC-AmB-CNLCs when tested against VL in Leishmania donovani-infected hamsters. The haemolysis and cytotoxicity studies showed the safety of HePC-AmB-CNLCs and Tween 80-AmB-CNLCs. The findings suggested that it would be preferable to deliver AmB through HePC stabilized chitosan anchored nanostructured lipid carriers for rapid and effective treatment with decreased adverse effects.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Quitosana/química , Portadores de Fármacos/química , Leishmania donovani/efeitos dos fármacos , Nanopartículas/química , Fosforilcolina/análogos & derivados , Anfotericina B/química , Anfotericina B/farmacocinética , Anfotericina B/farmacologia , Animais , Antiprotozoários/farmacocinética , Linhagem Celular , Estabilidade de Medicamentos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Fosforilcolina/química , Ratos , Ratos Wistar , Distribuição Tecidual
12.
Phytomedicine ; 24: 87-95, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28160866

RESUMO

BACKGROUND: Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most important medicinal plant in the traditional Indian medical systems. Pharmacological studies have established that root extracts of W. somnifera contain several bioactive constituents called withanolides. The plant has long been used for its several beneficial properties and recently as an immunomodulator. HYPOTHESIS/PURPOSE: A combination therapy including a potential and safe immunostimulant with lower doses of effective drug, which can reduce the parasitic burden and simultaneously can produce an enhancement of adaptive immunity, has proven to be significantly a more effective approach than immunotherapy or drug therapy alone. STUDY DESIGN: Evaluation of the immunostimulatory effect of W. somnifera chemotype NMITLI 101R when used in combination with ED50 doses of antileishmanial drugs in Leishmania donovani infected hamsters. METHODS: Infected animals were administered with chemotype 101R(30mg/kg × 15 days) either alone or in combination with ED50 doses of miltefosine (10mg/kg × 5 days), paromomycin (30mg/kg × 5 days) or amphotericin B (0.5mg/kg × 5 days). The treated animals were euthanized on days 30 and 60 post-treatment (p.t.) and checked for parasite clearance, delayed type hypersensitivity (DTH) response, cytokine and inducible nitric oxide synthase levels by real-time PCR, nitric oxide (NO) production, reactive oxygen species (ROS) generation, lymphoproliferative and antibody responses. RESULTS: The group of animals that received 101R and ED50 dose of miltefosine showed optimum inhibition of parasite multiplication (∼98%) by day 60 p.t. followed by the group that received 101R plus paromomycin (∼94%) and 101R plus amphotericin B (∼93%). The efficacy was well supported by the increased inducible NO synthase mRNA transcript, strong IFN-γand IL-12 mediated Th1 immune responses and significantly suppressed levels of Th2 cytokines (IL-4, IL-10 and TGF-ß). Additionally, same therapy also induced significant increase in the level of NO production, ROS generation, Leishmania specific IgG2 antibody along with profound DTH and strong T-cell responses as compared with all the other treated groups. CONCLUSION: Our results suggest that combination of chemotype 101R with ED50 doses of antileishmanial drugs may provide a promising alternative for the cure of visceral leishmaniasis with significant restoration of the host immune response.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Withania/química , Vitanolídeos/uso terapêutico , Animais , Antiprotozoários/farmacologia , Cricetinae , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Plantas Medicinais/química , Vitanolídeos/farmacologia
13.
Int J Antimicrob Agents ; 48(6): 695-702, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27876275

RESUMO

Green fluorescent protein produces significant fluorescence and is extremely stable, however its excitation maximum is close to the ultraviolet range and thus can damage living cells. Hence, Leishmania donovani stably expressing DsRed were developed and their suitability for flow cytometry-based antileishmanial screening was assessed by evaluating the efficacies of standard drugs as well as newly synthesised chalcone thiazolyl-hydrazone compounds. The DsRed gene was successfully integrated at the 18S rRNA locus of L. donovani and transfectants (LdDsRed) were selected using hygromycin B. Enhanced expression of DsRed and a high level of infectivity to J774A.1 macrophages were achieved, which was confirmed by fluorescence microscopy and flow cytometry. Furthermore, these LdDsRed transfectants were utilised for development of an in vitro screening assay using the standard antileishmanial drugs miltefosine, amphotericin B, pentamidine and paromomycin. The response of transfectants to standard drugs correlated well with previous reports. Subsequently, the suitability of this system was further assessed by screening a series of 18 newly synthesised chalcone thiazolyl-hydrazone compounds in vitro for their antileishmanial activity, wherein 8 compounds showed moderate antileishmanial activity. The most active compound 5g, with ca. 73% splenic parasite reduction, exerted its activity via generating nitric oxide and reactive oxygen species and inducing apoptosis in LdDsRed-infected macrophages. Thus, these observations established the applicability of LdDsRed transfectants for flow cytometry-based antileishmanial screening. Further efforts aimed at establishing a high-throughput screening assay and determining the in vivo screening of potential antileishmanial leads are required.


Assuntos
Antiprotozoários/farmacologia , Chalcona/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/métodos , Leishmania donovani/efeitos dos fármacos , Proteínas Luminescentes/análise , Coloração e Rotulagem/métodos , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/isolamento & purificação , Linhagem Celular , Chalcona/administração & dosagem , Cricetinae , DNA de Protozoário/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Hidrazonas/administração & dosagem , Hidrazonas/farmacologia , Leishmania donovani/genética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Proteínas Luminescentes/genética , Macrófagos/parasitologia , Masculino , Camundongos , RNA Ribossômico 18S/genética , Recombinação Genética , Resultado do Tratamento
14.
Pharm Res ; 33(11): 2617-29, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27401407

RESUMO

PURPOSE: To develop a biocompatible and bioresorbable calcium phosphate (CaP) nanoparticles (NPs) bearing Amphotericin B (AmB) with an aim to provide macrophage specific targeting in visceral leishmaniasis (VL). MATERIALS & METHODS: CaP-AmB-NPs were architectured through emulsion precipitation method. The developed formulation was extensively characterized for various parameters including in-vitro and in-vivo antileishmanial activity. Moreover, plasma pharmacokinetics, tissue biodistribution and toxicity profile were also assessed. RESULTS: Optimized CaP-AmB-NPs exhibited higher entrapment (71.1 ± 6.68%) of AmB. No trend related to higher hemolysis was apparent in the developed formulation as evidenced in commercially available colloidal and liposomal formulations. Cellular uptake of the developed CaP-AmB-NPs was quantified through flow cytometry in J774A.1 cell line, and a 23.90 fold rise in uptake was observed. Fluorescent microscopy also confirmed the time dependent rise in uptake. In-vivo multiple dose toxicity study demonstrated no toxicity upto 5 mg/kg dose of AmB. Plasma kinetics and tissue distribution studies established significantly higher concentration of AmB in group treated with CaP-AmB-NPs in liver and spleen as compared to CAmB, LAmB and AmB suspension group. In-vivo animal experimental results revealed that the CaP-AmB-NPs showed higher splenic parasite inhibition compared to CAmB and LAmB in leishmania parasite infected hamsters. CONCLUSIONS: The investigated CaP-AmB-NPs are effective in provoking macrophage mediated uptake and collectively features lower toxicity and offers a suitable replacement for available AmB-formulations for the obliteration of intra-macrophage VL parasite.


Assuntos
Anfotericina B/administração & dosagem , Antiprotozoários/administração & dosagem , Fosfatos de Cálcio/química , Portadores de Fármacos/química , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Anfotericina B/farmacocinética , Animais , Antiprotozoários/química , Antiprotozoários/farmacocinética , Linhagem Celular , Cricetinae , Liberação Controlada de Fármacos , Emulsões , Eritrócitos/efeitos dos fármacos , Hemólise , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo , Distribuição Tecidual
15.
Int J Parasitol Drugs Drug Resist ; 6(2): 125-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27183429

RESUMO

We investigated efficacy of nitric oxide (NO) against Leishmania donovani. NO is a mediator of host response to infection, with direct parasiticidal activity in addition to its role in signalling to evoke innate macrophage responses. However, it is short-lived and volatile, and is therefore difficult to introduce into infected cells and maintain inracellular concentrations for meaningful periods of time. We incorporated diethylenetriamine NO adduct (DETA/NO), a prodrug, into poly(lactide-co-glycolide) particles of ∼200 nm, with or without amphotericin B (AMB). These particles sustained NO levels in mouse macrophage culture supernatants, generating an area under curve (AUC0.08-24h) of 591.2 ± 95.1 mM × h. Free DETA/NO resulted in NO peaking at 3 h and declining rapidly to yield an AUC of 462.5 ± 193.4. Particles containing AMB and DETA/NO were able to kill ∼98% of promastigotes and ∼76% of amastigotes in 12 h when tested in vitro. Promastigotes and amastigotes were killed less efficiently by particles containing a single drug- either DETA/NO (∼42%, 35%) or AMB (∼90%, 50%) alone, or by equivalent concentrations of drugs in solution. In a pre-clinical efficacy study of power >0.95 in the hamster model, DETA/NO particles were non-inferior to Fungizone® but not Ambisome®, resulting in significant (∼73%) reduction in spleen parasites in 7 days. Particles containing both DETA/NO and AMB were superior (∼93% reduction) to Ambisome®. We conclude that NO delivered to the cytosol of macrophages infected with Leishmania possesses intrinsic activity and adds significantly to the efficacy of AMB.


Assuntos
Anfotericina B/administração & dosagem , Antiprotozoários/administração & dosagem , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Macrófagos/imunologia , Macrófagos/metabolismo , Compostos Nitrosos/administração & dosagem , Animais , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Modelos Animais de Doenças , Quimioterapia Combinada , Leishmania donovani/fisiologia , Camundongos , Nanopartículas/administração & dosagem , Resultado do Tratamento
16.
Front Microbiol ; 7: 312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047452

RESUMO

Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL.

17.
Colloids Surf B Biointerfaces ; 136: 150-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26381698

RESUMO

The present investigation reports the modification of chitosan nanoparticles with a ligand 4-sulfated N-acetyl galactosamine (4-SO4GalNAc) for efficient chemotherapy in leishmaniasis (SCNPs) by using dual strategy of targeting. These (SCNPs) were loaded with amphotericin B (AmB) for specific delivery to infected macrophages. Developed AmB loaded SCNPs (AmB-SCNPs) had mean particle size of 333 ± 7 nm, and showed negative zeta potential (-13.9 ± 0.016 mV). Flow cytometric analysis revealed enhanced uptake of AmB-SCNPs in J774A.1, when compared to AmB loaded unmodified chitosan NPs (AmB-CNPs). AmB-SCNPs provide significantly higher localization of AmB in liver and spleen as compared to AmB-CNPs after i.v. administration. The study stipulates that 4-SO4GalNAc assures of targeting, resident macrophages. Highly significant anti-leishmanial activity (P<0.05 compared with AmB-CNPs) was observed with AmB-SCNPs, causing 75.30 ± 3.76% inhibition of splenic parasitic burdens. AmB-CNPs and plain AmB caused only 63.89 ± 3.44% and 47.56 ± 2.37% parasite inhibition, respectively, in Leishmania-infected hamsters (P<0.01 for AmB-SCNPs versus plain AmB and AmB-CNPs versus plain AmB).


Assuntos
Acetilgalactosamina/química , Anfotericina B/administração & dosagem , Quitosana/química , Leishmaniose/tratamento farmacológico , Nanopartículas , Sulfatos/química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Macrófagos/parasitologia , Camundongos , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
18.
PLoS Negl Trop Dis ; 9(8): e0003992, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295340

RESUMO

BACKGROUND: Resistance emergence against antileishmanial drugs, particularly Sodium Antimony Gluconate (SAG) has severely hampered the therapeutic strategy against visceral leishmaniasis, the mechanism of resistance being indistinguishable. Cysteine leucine rich protein (CLrP), was recognized as one of the overexpressed proteins in resistant isolates, as observed in differential proteomics between sensitive and resistant isolates of L. donovani. The present study deals with the characterization of CLrP and for its possible connection with SAG resistance. METHODOLOGY AND PRINCIPAL FINDINGS: In pursuance of deciphering the role of CLrP in SAG resistance, gene was cloned, over-expressed in E. coli system and thereafter antibody was raised. The expression profile of CLrP and was found to be over-expressed in SAG resistant clinical isolates of L. donovani as compared to SAG sensitive ones when investigated by real-time PCR and western blotting. CLrP has been characterized through bioinformatics, immunoblotting and immunolocalization analysis, which reveals its post-translational modification along with its dual existence in the nucleus as well as in the membrane of the parasite. Further investigation using a ChIP assay confirmed its DNA binding potential. Over-expression of CLrP in sensitive isolate of L. donovani significantly decreased its responsiveness to SAG (SbV and SbIII) and a shift towards the resistant mode was observed. Further, a significant increase in its infectivity in murine macrophages has been observed. CONCLUSION/SIGNIFICANCE: The study reports the differential expression of CLrP in SAG sensitive and resistant isolates of L. donovani. Functional intricacy of CLrP increases with dual localization, glycosylation and DNA binding potential of the protein. Further over-expressing CLrP in sensitive isolate of L. donovani shows significantly decreased sensitivity towards SAG and increased infectivity as well, thus assisting the parasite in securing a safe niche. Results indicates the possible contribution of CLrP to antimonial resistance in L. donovani by assisting the parasite growth in the macrophages.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Resistência a Medicamentos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Proteínas de Protozoários/metabolismo , Anticorpos Antiprotozoários , Clonagem Molecular , DNA de Protozoário/genética , Escherichia coli , Regulação da Expressão Gênica , Genoma de Protozoário , Leishmania donovani/genética , Filogenia , Proteínas de Protozoários/genética
19.
Nanomedicine (Lond) ; 10(7): 1093-109, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25929567

RESUMO

AIM: Exploitation of lactoferrin-appended amphotericin B bearing nanoreservoir (LcfPGNP-AmB) for targeted eradication of Leishmania donovani. MATERIALS & METHODS: LcfPGNP-AmB was architechtured through ionic adsorption of lactoferrin over core poly (d,l-lactide-co-glycolide) nanoparticles and characterized. Anti-Leishmania activity in visceral leishmaniasis models, immunomodulatory potential, biodistribution and toxicity profile were also assessed. RESULTS: LcfPGNP-AmB (size, 196.0 ± 5.28 nm; zeta-potential, +21.7 ± 1.52 mV; encapsulation efficiency, ∼89%) showed reduced toxicity, increased protective proinflammatory mediators expression and down-regulation of disease-promoting cytokines. Biodistribution study illustrated preferential accumulation of LcfPGNP-AmB in liver and spleen. LcfPGNP-AmB showed augmented antileishmanial activity by significantly reducing (∼88%) splenic parasite burden of infected hamsters, compared with commercial-formulations. CONCLUSION: Superior efficacy, desired stability and reliable safety of cost-effective LcfPGNP-AmB, suggest its potential for leishmaniasis therapeutics.


Assuntos
Anfotericina B/administração & dosagem , Portadores de Fármacos/química , Lactoferrina/química , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Tripanossomicidas/administração & dosagem , Anfotericina B/farmacocinética , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Linhagem Celular , Cricetinae , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Lactoferrina/metabolismo , Leishmaniose Visceral/parasitologia , Macrófagos/parasitologia , Masculino , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Ratos Wistar , Baço/parasitologia , Distribuição Tecidual , Tripanossomicidas/farmacocinética , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
20.
Int J Biol Macromol ; 79: 27-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25931395

RESUMO

Current leishmaniasis treatment is strangled due to concealed residence of parasite and reduced host cell mediated immune response. To circumvent above challenges, novel macrophage targeted oily core polymeric shell based doxorubicin (DOX) loaded nanocapsules (NCAPs) were fabricated employing chondroitin sulphate (CHD) for complimentary immunotherapy coupled chemotherapy against leishmaniasis. Excellent encapsulation efficiency along with pH dependent drug release was demonstrated by NCAPs. Improved cell cycle arrest at G1-S phase (1.56 folds) and apoptosis against promastigotes (6.26 folds), support the remarkable in-vitro antileishmanial activity of NCAPs (IC50: 0.254±0.038 µg/ml) compared to free DOX (IC50: 0.543±0.012 µg/ml). In-vivo antileishmanial activity in hamsters represented a significantly enhanced parasitic inhibition by NCAPs (1.42 folds). Improved activity was mediated via immunotherapeutic activity of NCAPs which up-regulated Th1 immune response (IL-12, INF-γ, and TNF-α) and down-regulated Th2 immune response (IL-4, IL-10, and TGF-ß). In conclusion, current novel nano-formulation could be a viable option against leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Condroitina/química , Doxorrubicina/farmacologia , Imunidade Celular/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cricetulus , Composição de Medicamentos , Liberação Controlada de Fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-12/biossíntese , Interleucina-12/imunologia , Interleucina-4/biossíntese , Interleucina-4/imunologia , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/parasitologia , Nanocápsulas , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/parasitologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/parasitologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA