Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Clin Neurophysiol ; 161: 1-9, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430856

RESUMO

OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.


Assuntos
Eletroencefalografia , Epilepsia , Aprendizado de Máquina , Humanos , Feminino , Masculino , Adulto , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem , Eletrocorticografia/métodos , Eletrocorticografia/normas , Adolescente , Encéfalo/fisiopatologia , Fases do Sono/fisiologia
3.
Neurol Genet ; 9(6): e200103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37900581

RESUMO

Background and Objectives: Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods: We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results: We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion: The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.

4.
Hum Brain Mapp ; 44(17): 5982-6000, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37750611

RESUMO

Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a unique and noninvasive method for epilepsy presurgical evaluation. When selecting voxels by null-hypothesis tests, the conventional analysis may overestimate fMRI response amplitudes related to interictal epileptic discharges (IEDs), especially when IEDs are rare. We aimed to estimate fMRI response amplitudes represented by blood oxygen level dependent (BOLD) percentage changes related to IEDs using a hierarchical model. It involves the local and distributed hemodynamic response homogeneity to regularize estimations. Bayesian inference was applied to fit the model. Eighty-two epilepsy patients who underwent EEG-fMRI and subsequent surgery were included in this study. A conventional voxel-wise general linear model was compared to the hierarchical model on estimated fMRI response amplitudes and on the concordance between the highest response cluster and the surgical cavity. The voxel-wise model overestimated fMRI responses compared to the hierarchical model, evidenced by a practically and statistically significant difference between the estimated BOLD percentage changes. Only the hierarchical model differentiated brief and long-lasting IEDs with significantly different BOLD percentage changes. Overall, the hierarchical model outperformed the voxel-wise model on presurgical evaluation, measured by higher prediction performance. When compared with a previous study, the hierarchical model showed higher performance metric values, but the same or lower sensitivity. Our results demonstrated the capability of the hierarchical model of providing more physiologically reasonable and more accurate estimations of fMRI response amplitudes induced by IEDs. To enhance the sensitivity of EEG-fMRI for presurgical evaluation, it may be necessary to incorporate more appropriate spatial priors and bespoke decision strategies.


Assuntos
Epilepsia , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Teorema de Bayes , Mapeamento Encefálico/métodos , Oxigênio , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem
5.
Epilepsia ; 64(11): 3049-3060, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37592755

RESUMO

OBJECTIVE: Focal cortical dysplasia (FCD), hippocampal sclerosis (HS), nonspecific gliosis (NG), and normal tissue (NT) comprise the majority of histopathological results of surgically treated drug-resistant epilepsy patients. Epileptic spikes, high-frequency oscillations (HFOs), and connectivity measures are valuable biomarkers of epileptogenicity. The question remains whether they could also be utilized for preresective differentiation of the underlying brain pathology. This study explored spikes and HFOs together with functional connectivity in various epileptogenic pathologies. METHODS: Interictal awake stereoelectroencephalographic recordings of 33 patients with focal drug-resistant epilepsy with seizure-free postoperative outcomes were analyzed (15 FCD, 8 HS, 6 NT, and 4 NG). Interictal spikes and HFOs were automatically identified in the channels contained in the overlap of seizure onset zone and resected tissue. Functional connectivity measures (relative entropy, linear correlation, cross-correlation, and phase consistency) were computed for neighboring electrode pairs. RESULTS: Statistically significant differences were found between the individual pathologies in HFO rates, spikes, and their characteristics, together with functional connectivity measures, with the highest values in the case of HS and NG/NT. A model to predict brain pathology based on all interictal measures achieved up to 84.0% prediction accuracy. SIGNIFICANCE: The electrophysiological profile of the various epileptogenic lesions in epilepsy surgery patients was analyzed. Based on this profile, a predictive model was developed. This model offers excellent potential to identify the nature of the underlying lesion prior to resection. If validated, this model may be particularly valuable for counseling patients, as depending on the lesion type, different outcomes are achieved after epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Técnicas Estereotáxicas , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
6.
Ann Neurol ; 93(3): 522-535, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373178

RESUMO

OBJECTIVE: Epileptic spikes are the traditional interictal electroencephalographic (EEG) biomarker for epilepsy. Given their low specificity for identifying the epileptogenic zone (EZ), they are given only moderate attention in presurgical evaluation. This study aims to demonstrate that it is possible to identify specific spike features in intracranial EEG that optimally define the EZ and predict surgical outcome. METHODS: We analyzed spike features on stereo-EEG segments from 83 operated patients from 2 epilepsy centers (37 Engel IA) in wakefulness, non-rapid eye movement sleep, and rapid eye movement sleep. After automated spike detection, we investigated 135 spike features based on rate, morphology, propagation, and energy to determine the best feature or feature combination to discriminate the EZ in seizure-free and non-seizure-free patients by applying 4-fold cross-validation. RESULTS: The rate of spikes with preceding gamma activity in wakefulness performed better for surgical outcome classification (4-fold area under receiver operating characteristics curve [AUC] = 0.755 ± 0.07) than the seizure onset zone, the current gold standard (AUC = 0.563 ± 0.05, p = 0.015) and the ripple rate, an emerging seizure-independent biomarker (AUC = 0.537 ± 0.07, p = 0.006). Channels with a spike-gamma rate exceeding 1.9/min had an 80% probability of being in the EZ. Combining features did not improve the results. INTERPRETATION: Resection of brain regions with high spike-gamma rates in wakefulness is associated with a high probability of achieving seizure freedom. This rate could be applied to determine the minimal number of spiking channels requiring resection. In addition to quantitative analysis, this feature is easily accessible to visual analysis, which could aid clinicians during presurgical evaluation. ANN NEUROL 2023;93:522-535.


Assuntos
Epilepsia , Humanos , Epilepsia/cirurgia , Convulsões/diagnóstico , Eletroencefalografia/métodos , Encéfalo/cirurgia , Biomarcadores
7.
J Child Neurol ; 37(12-14): 992-1002, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36184927

RESUMO

BACKGROUND: Continuous spike wave in sleep (CSWS) is an electroencephalogram (EEG) pattern associated with developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS). This etiologically heterogeneous syndrome may occur because of genetic factors and congenital or acquired brain lesions. We studied the pattern of clinical presentation and underlying etiologies in patients with DEE-SWAS that respond to resective surgery. METHODS: We reviewed our clinical and research databases for patients who had resolution of CSWS following surgical resection of a focal lesion. RESULTS: We identified 5 patients meeting inclusion criteria. In 3 of 5, an epileptogenic structural abnormality was not apparent on brain magnetic resonance imaging (MRI). In all 3 patients, focal cortical dysplasia was identified through intracranial EEG monitoring. SIGNIFICANCE: DEE-SWAS may be a secondary bilateral network epilepsy syndrome, which can be treated with resection of the inciting focal lesion. In patients with drug-resistant CSWS, clinicians should consider a complete epilepsy presurgical workup, including intracranial EEG monitoring.


Assuntos
Epilepsia Generalizada , Humanos , Eletroencefalografia/métodos , Sono/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Imageamento por Ressonância Magnética
8.
Neurology ; 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473762

RESUMO

OBJECTIVES: Accurate delineation of the seizure-onset zone (SOZ) in focal drug-resistant epilepsy often requires stereo-electroencephalography (SEEG) recordings. We aimed at: (1) proposing a truly objective and quantitative comparison between electro-encephalography/magnetoencephalography (EEG/MEG) source-imaging (EMSI), EEG/functional MRI (EEG/fMRI) responses for similar spikes with primary-irritative zone (PIZ) and SOZ defined by SEEG and (2) evaluating the value of EMSI and EEG/fMRI to predict postsurgical outcome. METHODS: We identified patients with drug-resistant epilepsy who underwent EEG/MEG, EEG/fMRI, and subsequent SEEG at the Epilepsy Service from the Montreal Neurological Institute and Hospital. We quantified multimodal concordance within the SEEG channel-space, as spatial overlap with PIZ/SOZ and distances to the Spike-onset, Spike-maximum-amplitude and Seizure-core intracerebral channels, by applying a new methodology consisting of converting EMSI results into SEEG electrical potentials (EMSIe-SEEG) and projecting the most significant fMRI response on the SEEG channels (fMRIp-SEEG). Spatial overlaps with PIZ/SOZ (AUCPIZ, AUCSOZ) were assessed by using the area under the receiver operating characteristic curve (AUC). Here, AUC represents the probability that a randomly picked active contact exhibited higher amplitude when located inside the spatial reference than outside. RESULTS: Seventeen patients were included. Mean spatial overlaps with the primary-irritative zone and seizure-onset zone were 0.71 and 0.65 for EMSIe-SEEG, and 0.57 and 0.62 for fMRIp-SEEG. Good EMSIe-SEEG  spatial overlap with the primary-irritative zone was associated with smaller distance from the maximum EMSIe-SEEG contact to the Spike-maximum-amplitude channel (median distance 14 mm). Conversely, good fMRIp-SEEG spatial overlap with the seizure-onset zone was associated with smaller distances from the maximum  fMRIp-SEEG contact to the Spike-onset and Seizure-core channels (median distances 10 mm and 5mm respectively). Surgical outcomes were correctly predicted by EEG/MEG in 12/15 (80%) patients and EEG/fMRI in 6/11(54%) patients. CONCLUSIONS: Using a unique quantitative approach estimating EMSI and fMRI results in the reference SEEG channel-space, EEG/MEG and EEG/fMRI accurately localized the seizure-onset zone as well as the primary-irritative zone. Precisely, EEG/MEG more accurately localized the primary-irritative zone, whereas EEG/fMRI was more sensitive to the seizure-onset zone. Both neuro-imaging techniques provide complementary localization that can help guiding SEEG implantation and selecting good candidates for surgery.

9.
Brain Sci ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203889

RESUMO

BACKGROUND: Epilepsy surgery failure is not uncommon, with several explanations having been proposed. In this series, we detail cases of epilepsy surgery failure subsequently attributed to insular involvement. METHODS: We retrospectively identified patients investigated at the epilepsy monitoring units of two Canadian tertiary care centers (2004-2020). Included patients were adults who had undergone epilepsy surgeries with recurrence of seizures post-operatively and who were subsequently determined to have an insular epileptogenic focus. Clinical, electrophysiological, neuroimaging, and surgical data were synthesized. RESULTS: We present 14 patients who demonstrated insular epileptic activity post-surgery-failure as detected by intracranial EEG, MEG, or seizure improvement after insular resection. Seven patients had manifestations evoking possible insular involvement prior to their first surgery. Most patients (8/14) had initial surgeries targeting the temporal lobe. Seizure recurrence ranged from the immediate post-operative period to one year. The main modality used to determine insular involvement was MEG (8/14). Nine patients underwent re-operations that included insular resection; seven achieved a favorable post-operative outcome (Engel I or II). CONCLUSIONS: Our series suggests that lowering the threshold for suspecting insular epilepsy may be necessary to improve epilepsy surgery outcomes. Detecting insular epilepsy post-surgery-failure may allow for re-operations which may lead to good outcomes.

10.
Clin Neurophysiol ; 134: 88-99, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34991017

RESUMO

OBJECTIVE: We hypothesized that spatio-temporal dynamics of interictal spikes reflect the extent and stability of epileptic sources and determine surgical outcome. METHODS: We studied 30 consecutive patients (14 good outcome). Spikes were detected in prolonged stereo-electroencephalography recordings. We quantified the spatio-temporal dynamics of spikes using the variance of the spike rate, line length and skewness of the spike distribution, and related these features to outcome. We built a logistic regression model, and compared its performance to traditional markers. RESULTS: Good outcome patients had more dominant and stable sources than poor outcome patients as expressed by a higher variance of spike rates, a lower variance of line length, and a lower variance of positive skewness (ps < 0.05). The outcome was correctly predicted in 80% of patients. This was better or non-inferior to predictions based on a focal lesion (p = 0.016), focal seizure-onset zone, or complete resection (ps > 0.05). In the five patients where traditional markers failed, spike distribution predicted the outcome correctly. The best results were achieved by 18-h periods or longer. CONCLUSIONS: Analysis of spike dynamics shows that surgery outcome depends on strong, single and stable sources. SIGNIFICANCE: Our quantitative method has the potential to be a reliable predictor of surgical outcome.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Adulto , Encéfalo/cirurgia , Mapeamento Encefálico , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Procedimentos Neurocirúrgicos , Prognóstico , Resultado do Tratamento , Adulto Jovem
11.
J Neurosurg Pediatr ; 29(1): 74-82, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624842

RESUMO

OBJECTIVE: In an attempt to improve postsurgical seizure outcomes for poorly defined cases (PDCs) of pediatric focal epilepsy (i.e., those that are not visible or well defined on 3T MRI), the authors modified their presurgical evaluation strategy. Instead of relying on concordance between video-electroencephalography and 3T MRI and using functional imaging and intracranial recording in select cases, the authors systematically used a multimodal, 3-tiered investigation protocol that also involved new collaborations between their hospital, the Montreal Children's Hospital, and the Montreal Neurological Institute. In this study, the authors examined how their new strategy has impacted postsurgical outcomes. They hypothesized that it would improve postsurgical seizure outcomes, with the added benefit of identifying a subset of tests contributing the most. METHODS: Chart review was performed for children with PDCs who underwent resection following the new strategy (i.e., new protocol [NP]), and for the same number who underwent treatment previously (i.e., preprotocol [PP]); ≥ 1-year follow-up was required for inclusion. Well-defined, multifocal, and diffuse hemispheric cases were excluded. Preoperative demographics and clinical characteristics, resection volumes, and pathology, as well as seizure outcomes (Engel class Ia vs > Ia) at 1 year postsurgery and last follow-up were reviewed. RESULTS: Twenty-two consecutive NP patients were compared with 22 PP patients. There was no difference between the two groups for resection volumes, pathology, or preoperative characteristics, except that the NP group underwent more presurgical evaluation tests (p < 0.001). At 1 year postsurgery, 20 of 22 NP patients and 10 of 22 PP patients were seizure free (OR 11.81, 95% CI 2.00-69.68; p = 0.006). Magnetoencephalography and PET/MRI were associated with improved postsurgical seizure outcomes, but both were highly correlated with the protocol group (i.e., independent test effects could not be demonstrated). CONCLUSIONS: A new presurgical evaluation strategy for children with PDCs of focal epilepsy led to improved postsurgical seizure freedom. No individual presurgical evaluation test was independently associated with improved outcome, suggesting that it may be the combined systematic protocol and new interinstitutional collaborations that makes the difference rather than any individual test.


Assuntos
Técnicas de Diagnóstico Neurológico , Epilepsias Parciais/cirurgia , Neurocirurgia/métodos , Cirurgia Assistida por Computador/métodos , Criança , Pré-Escolar , Eletrofisiologia/métodos , Epilepsias Parciais/complicações , Feminino , Humanos , Masculino , Imagem Multimodal/métodos , Neuroimagem/métodos , Convulsões/etiologia , Convulsões/cirurgia , Resultado do Tratamento
12.
JAMA Neurol ; 79(1): 70-79, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34870697

RESUMO

Importance: Stereoelectroencephalography (SEEG) has become the criterion standard in case of inconclusive noninvasive presurgical epilepsy workup. However, up to 40% of patients are subsequently not offered surgery because the seizure-onset zone is less focal than expected or cannot be identified. Objective: To predict focality of the seizure-onset zone in SEEG, the 5-point 5-SENSE score was developed and validated. Design, Setting, and Participants: This was a monocentric cohort study for score development followed by multicenter validation with patient selection intervals between February 2002 to October 2018 and May 2002 to December 2019. The minimum follow-up period was 1 year. Patients with drug-resistant epilepsy undergoing SEEG at the Montreal Neurological Institute were analyzed to identify a focal seizure-onset zone. Selection criteria were 2 or more seizures in electroencephalography and availability of complete neuropsychological and neuroimaging data sets. For validation, patients from 9 epilepsy centers meeting these criteria were included. Analysis took place between May and July 2021. Main Outcomes and Measures: Based on SEEG, patients were grouped as focal and nonfocal seizure-onset zone. Demographic, clinical, electroencephalography, neuroimaging, and neuropsychology data were analyzed, and a multiple logistic regression model for developing a score to predict SEEG focality was created and validated in an independent sample. Results: A total of 128 patients (57 women [44.5%]; median [range] age, 31 [13-58] years) were analyzed for score development and 207 patients (97 women [46.9%]; median [range] age, 32 [16-70] years) were analyzed for validation. The score comprised the following 5 predictive variables: focal lesion on structural magnetic resonance imaging, absence of bilateral independent spikes in scalp electroencephalography, localizing neuropsychological deficit, strongly localizing semiology, and regional ictal scalp electroencephalography onset. The 5-SENSE score had an optimal mean (SD) probability cutoff for identifying a focal seizure-onset zone of 37.6 (3.5). Area under the curve, specificity, and sensitivity were 0.83, 76.3% (95% CI, 66.7-85.8), and 83.3% (95% CI, 72.30-94.1), respectively. Validation showed 76.0% (95% CI, 67.5-84.0) specificity and 52.3% (95% CI, 43.0-61.5) sensitivity. Conclusions and Relevance: High specificity in score development and validation confirms that the 5-SENSE score predicts patients where SEEG is unlikely to identify a focal seizure-onset zone. It is a simple and useful tool for assisting clinicians to reduce unnecessary invasive diagnostic burden on patients and overutilization of limited health care resources.


Assuntos
Eletroencefalografia , Epilepsia/diagnóstico , Convulsões/diagnóstico , Inquéritos e Questionários/normas , Estudos de Coortes , Epilepsia/cirurgia , Feminino , Humanos , Masculino , Cuidados Pré-Operatórios , Convulsões/cirurgia
13.
Epilepsia ; 63(2): 483-496, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34919741

RESUMO

OBJECTIVE: The integration of high-frequency oscillations (HFOs; ripples [80-250 Hz], fast ripples [250-500 Hz]) in epilepsy evaluation is hampered by physiological HFOs, which cannot be reliably differentiated from pathological HFOs. We evaluated whether defining abnormal HFO rates by statistical comparison to region-specific physiological HFO rates observed in the healthy brain improves identification of the epileptic focus and surgical outcome prediction. METHODS: We detected HFOs in 151 consecutive patients who underwent stereo-electroencephalography and subsequent resective epilepsy surgery at two tertiary epilepsy centers. We compared how HFOs identified the resection cavity and predicted seizure-free outcome using two thresholds from the literature (HFO rate > 1/min; 50% of the total number of a patient's HFOs) and three thresholds based on normative rates from the Montreal Neurological Institute Open iEEG Atlas (https://mni-open-ieegatlas. RESEARCH: mcgill.ca/): global Atlas threshold, regional Atlas threshold, and regional + 10% threshold after regional Atlas correction. RESULTS: Using ripples, the regional + 10% threshold performed best for focus identification (77.3% accuracy, 27% sensitivity, 97.1% specificity, 80.6% positive predictive value [PPV], 78.2% negative predictive value [NPV]) and outcome prediction (69.5% accuracy, 58.6% sensitivity, 76.3% specificity, 60.7% PPV, 74.7% NPV). This was an improvement for focus identification (+1.1% accuracy, +17.0% PPV; p < .001) and outcome prediction (+12.0% sensitivity, +1.0% PPV; p = .05) compared to the 50% threshold. The improvement was particularly marked for foci in cortex, where physiological ripples are frequent (outcome: +35.3% sensitivity, +5.3% PPV; p = .014). In these cases, the regional + 10% threshold outperformed fast ripple rate > 1/min (+3.6% accuracy, +26.5% sensitivity, +21.6% PPV; p < .001) and seizure onset zone (+13.5% accuracy, +29.4% sensitivity, +17.0% PPV; p < .05-.01) for outcome prediction. Normalization did not improve the performance of fast ripples. SIGNIFICANCE: Defining abnormal HFO rates by statistical comparison to rates in healthy tissue overcomes an important weakness in the clinical use of ripples. It improves focus identification and outcome prediction compared to standard HFO measures, increasing their clinical applicability.


Assuntos
Epilepsia , Encéfalo/cirurgia , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/cirurgia , Humanos , Convulsões/cirurgia
14.
J Neurosurg ; : 1-7, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972090

RESUMO

OBJECTIVE: The authors' objective was to report postsurgical seizure outcome of temporal lobe epilepsy (TLE) patients with normal or subtle, nonspecific MRI findings and to identify prognostic factors related to seizure control after surgery. METHODS: This was a retrospective study of patients who underwent surgery from 1999 to 2014 at two comprehensive epilepsy centers. Patients with a clear MRI lesion according to team discussion and consensus were excluded. Presurgical information, surgery details, pathological data, and postsurgical outcomes were retrospectively collected from medical charts. Multiple logistic regression analysis was used to assess the effect of clinical, surgical, and neuroimaging factors on the probability of Engel class I (favorable) versus class II-IV (unfavorable) outcome at last follow-up. RESULTS: The authors included 73 patients (59% were female; median age at surgery 35.9 years) who underwent operations after a median duration of epilepsy of 13 years. The median follow-up after surgery was 30.6 months. At latest follow-up, 44% of patients had Engel class I outcome. Favorable prognostic factors were focal nonmotor aware seizures and unilateral or no spikes on interictal scalp EEG. CONCLUSIONS: Favorable outcome can be achieved in a good proportion of TLE patients with normal or subtle, nonspecific MRI findings, particularly when presurgical investigation suggests a rather circumscribed generator. Presurgical factors such as the presence of focal nonmotor aware seizures and unilateral or no spikes on interictal EEG may indicate a higher probability of seizure freedom.

15.
Neurology ; 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400584

RESUMO

OBJECTIVE: To assess the utility of EEG-fMRI for epilepsy surgery, we evaluated surgical outcome in relation to the resection of the most significant EEG-fMRI response. METHODS: Patients with post-operative neuroimaging and follow-up of at least one year were included. In EEG-fMRI responses, we defined as "primary" the cluster with the highest absolute t-value located in the cortex, and evaluated three levels of confidence for the results. The threshold for low confidence was t ≥ 3.1 (p < 0.005); the one for medium confidence corresponded to correction for multiple comparisons with a false discovery rate of 0.05; and a result reached high confidence when the primary cluster was much more significant than the next highest cluster. Concordance with the resection was determined by comparison to post-operative neuroimaging. RESULTS: We evaluated 106 epilepsy surgeries in 84 patients. An increasing association between concordance and surgical outcome with higher levels of confidence was demonstrated. If the peak response was not resected, the surgical outcome was likely to be poor: for the high confidence level, no patient had a good outcome; for the medium and low levels, only 18% and 28% had a good outcome. The positive predictive value remained low for all confidence levels, indicating that removing the maximum cluster did not ensure seizure freedom. CONCLUSION: Resection of the primary EEG-fMRI cluster, especially in high confidence cases, is necessary to obtain a good outcome, but not sufficient. CLASSIFICATION OF EVIDENCE: This study provided Class II evidence that failure to resect the primary EEG-fMRI cluster is associated with poorer epilepsy surgery outcomes.

16.
Ann Clin Transl Neurol ; 8(6): 1212-1223, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951322

RESUMO

OBJECTIVE: To determine if properties of epileptic networks could be delineated using interictal spike propagation seen on stereo-electroencephalography (SEEG) and if these properties could predict surgical outcome in patients with drug-resistant epilepsy. METHODS: We studied the SEEG of 45 consecutive drug-resistant epilepsy patients who underwent subsequent epilepsy surgery: 18 patients with good post-surgical outcome (Engel I) and 27 with poor outcome (Engel II-IV). Epileptic networks were derived from interictal spike propagation; these networks described the generation and propagation of interictal epileptic activity. We compared the regions in which spikes were frequent and the regions responsible for generating spikes to the area of resection and post-surgical outcome. We developed a measure termed source spike concordance, which integrates information about both spike rate and region of spike generation. RESULTS: Inclusion in the resection of regions with high spike rate is associated with good post-surgical outcome (sensitivity = 0.82, specificity = 0.73). Inclusion in the resection of the regions responsible for generating interictal epileptic activity independently of rate is also associated with good post-surgical outcome (sensitivity = 0.88, specificity = 0.82). Finally, when integrating the spike rate and the generators, we find that the source spike concordance measure has strong predictability (sensitivity = 0.91, specificity = 0.94). INTERPRETATIONS: Epileptic networks derived from interictal spikes can determine the generators of epileptic activity. Inclusion of the most active generators in the resection is strongly associated with good post-surgical outcome. These epileptic networks may aid clinicians in determining the area of resection during pre-surgical evaluation.


Assuntos
Córtex Cerebral , Epilepsia Resistente a Medicamentos , Eletroencefalografia , Epilepsias Parciais , Rede Nervosa , Adolescente , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/cirurgia , Procedimentos Neurocirúrgicos , Avaliação de Resultados em Cuidados de Saúde , Prognóstico , Sensibilidade e Especificidade , Adulto Jovem
17.
Neurology ; 95(16): e2235-e2245, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32753439

RESUMO

OBJECTIVE: To examine whether fast ripples (FRs) are an accurate marker of the epileptogenic zone, we analyzed overnight stereo-EEG recordings from 43 patients and hypothesized that FR resection ratio, maximal FR rate, and FR distribution predict postsurgical seizure outcome. METHODS: We detected FRs automatically from an overnight recording edited for artifacts and visually from a 5-minute period of slow-wave sleep. We examined primarily the accuracy of removing ≥50% of total FR events or of channels with FRs to predict postsurgical seizure outcome (Engel class I = good, classes II-IV = poor) according to the whole-night and 5-minute analysis approaches. Secondarily, we examined the association of low overall FR rates or absence or incomplete resection of 1 dominant FR area with poor outcome. RESULTS: The accuracy of outcome prediction was highest (81%, 95% confidence interval [CI] 67%-92%) with the use of the FR event resection ratio and whole-night recording (vs 72%, 95% CI 56%-85%, for the visual 5-minute approach). Absence of channels with FR rates >6/min (p = 0.001) and absence or incomplete resection of 1 dominant FR area (p < 0.001) were associated with poor outcome. CONCLUSIONS: FRs are accurate in predicting epilepsy surgery outcome at the individual level when overnight recordings are used. Absence of channels with high FR rates or absence of 1 dominant FR area is a poor prognostic factor that may reflect suboptimal spatial sampling of the epileptogenic zone or multifocality, rather than an inherently low sensitivity of FRs. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that FRs are accurate in predicting epilepsy surgery outcome.


Assuntos
Ondas Encefálicas , Encéfalo/fisiopatologia , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/cirurgia , Adolescente , Adulto , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Sensibilidade e Especificidade , Resultado do Tratamento , Adulto Jovem
18.
J Neural Eng ; 17(3): 035007, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32191632

RESUMO

OBJECTIVE: Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup. APPROACH: In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy. MEG recorded prior to surgery from seven seizure-free (Engel Ia) and five non seizure-free (Engel III or IV) patients were analyzed (minimum 2-years post-surgical follow-up). MEG segments without any detectable epileptic activity were source localized using wavelet-based Maximum Entropy on the Mean method. Amplitude envelope correlation in the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-26 Hz) bands were used for assessing connectivity. MAIN RESULTS: For seizure-free patients, we found an isolated epileptic network characterized by weaker connections between the brain region where interictal epileptic discharges (IED) are generated and the rest of the cortex, when compared to connectivity between the corresponding contralateral homologous region and the rest of the cortex. Contrarily, non seizure-free patients exhibited a widespread RS epileptic network characterized by stronger connectivity between the IED generator and the rest of the cortex, in comparison to the contralateral region and the cortex. Differences between the two seizure outcome groups concerned mainly distant long-range connections and were found in the alpha-band. SIGNIFICANCE: Importantly, these connectivity patterns suggest specific mechanisms describing the underlying organization of the epileptic network and were detectable at the individual patient level, supporting the prospect use of MEG connectivity patterns in epilepsy to predict post-surgical seizure outcome.


Assuntos
Epilepsias Parciais , Epilepsia , Encéfalo , Mapeamento Encefálico , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Epilepsia/cirurgia , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Estudos Retrospectivos , Resultado do Tratamento
19.
J Neurosurg ; 133(6): 1863-1872, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783358

RESUMO

OBJECTIVE: The authors sought to determine which neurophysiological seizure-onset features seen during scalp electroencephalography (EEG) and intracerebral EEG (iEEG) monitoring are predictors of postoperative outcome in a large series of patients with drug-resistant focal epilepsy who underwent resective surgery. METHODS: The authors retrospectively analyzed the records of 75 consecutive patients with focal epilepsy, who first underwent scalp EEG and then iEEG (stereo-EEG) for presurgical assessment and who went on to undergo resective surgery between 2004 and 2015. To determine the independent prognostic factors from the neurophysiological scalp EEG and iEEG seizure-onset information, univariate and standard multivariable logistic regression analyses were used. Since scalp EEG and iEEG data were recorded at different times, the authors matched scalp seizures with intracerebral seizures for each patient using strict criteria. RESULTS: A total of 3057 seizures were assessed. Forty-eight percent (36/75) of patients had a favorable outcome (Engel class I-II) after a minimum follow-up of at least 1 year. According to univariate analysis, a localized scalp EEG seizure onset (p < 0.001), a multilobar intracerebral seizure-onset zone (SOZ) (p < 0.001), and an extended SOZ (p = 0.001) were significantly associated with surgical outcome. According to multivariable analysis, the following two independent factors were found: 1) the ability of scalp EEG to localize the seizure onset was a predictor of a favorable postoperative outcome (OR 6.073, 95% CI 2.011-18.339, p = 0.001), and 2) a multilobar SOZ was a predictor of an unfavorable outcome (OR 0.076, 95% CI 0.009-0.663, p = 0.020). CONCLUSIONS: The study findings show that localization at scalp seizure onset and a multilobar SOZ were strong predictors of surgical outcome. These predictors can help to select the better candidates for resective surgery.

20.
Epilepsia ; 60(12): 2404-2415, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31705527

RESUMO

OBJECTIVE: Interictal epileptiform anomalies such as epileptiform discharges or high-frequency oscillations show marked variations across the sleep-wake cycle. This study investigates which state of vigilance is the best to localize the epileptogenic zone (EZ) in interictal intracranial electroencephalography (EEG). METHODS: Thirty patients with drug-resistant epilepsy undergoing stereo-EEG (SEEG)/sleep recording and subsequent open surgery were included; 13 patients (43.3%) had good surgical outcome (Engel class I). Sleep was scored following standard criteria. Multiple features based on the interictal EEG (interictal epileptiform discharges, high-frequency oscillations, univariate and bivariate features) were used to train a support vector machine (SVM) model to classify SEEG contacts placed in the EZ. The performance of the algorithm was evaluated by the mean area under the receiver-operating characteristic (ROC) curves (AUCs) and positive predictive values (PPVs) across 10-minute sections of wake, non-rapid eye movement sleep (NREM) stages N2 and N3, REM sleep, and their combination. RESULTS: Highest AUCs were achieved in NREM sleep stages N2 and N3 compared to wakefulness and REM (P < .01). There was no improvement when using a combination of all four states (P > .05); the best performing features in the combined state were selected from NREM sleep. There were differences between good (Engel I) and poor (Engel II-IV) outcomes in PPV (P < .05) and AUC (P < .01) across all states. The SVM multifeature approach outperformed spikes and high-frequency oscillations (P < .01) and resulted in results similar to those of the seizure-onset zone (SOZ; P > .05). SIGNIFICANCE: Sleep improves the localization of the EZ with best identification obtained in NREM sleep stages N2 and N3. Results based on the multifeature classification in 10 minutes of NREM sleep were not different from the results achieved by the SOZ based on 12.7 days of seizure monitoring. This finding might ultimately result in a more time-efficient intracranial presurgical investigation of focal epilepsy.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/métodos , Fases do Sono/fisiologia , Vigília/fisiologia , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA