Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 2): 126757, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678695

RESUMO

Marine algae are the most abundant resource in the marine environment and are still a promising source of bioactive compounds including hydrocolloids. This study contributes to the evaluation of the biological and biotechnological potentials of two water soluble polysaccharides, namely alginates (AHS) and fucoidan (FHS), extracted and purified from Halopteris scoparia, an abundant Tunisian brown macroalgae collected in Tunisia (Tabarka region). The total sugars, neutral monosaccharides, uronic acids, proteins, polyphenols, and sulfate groups contents were quantified for both fractions, as well as their functional groups and primary structural features by Fourier transform infrared spectroscopy, ionic and/or gas chromatography and nuclear magnetic resonance analyses. AHS and FHS showed significant anti-inflammatory (IC50 ≈ 1 mg/mL), anticoagulant (e.g., 27-61.7 for the activated partial thromboplastin time), antihyperglycemic (0.1-40 µg/mL) and anti-trypsin (IC50 ≈ 0.3-0.4 mg/mL) effects. FHS and a hydrolyzed fraction showed a very promising potential against herpes viruses (HSV-1) (IC50 < 28 µg/mL). Besides, AHS and two hydrolyzed fractions were able to stimulate the natural defenses of tomato seedlings, assessing their elicitor capacity, by increasing the activity of phenylalanine ammonia-lyase (66-422 %) but also significantly changing the polyphenol content in the leaves (121-243 %) and roots (30-104 %) of tomato plants.


Assuntos
Phaeophyceae , Scoparia , Alga Marinha , Alga Marinha/química , Água/metabolismo , Polissacarídeos/química , Phaeophyceae/química
2.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375426

RESUMO

Here, we report work on developing an enzymatic process to improve the functionalities of industrial lignin. A kraft lignin sample prepared from marine pine was treated with the high-redox-potential laccase from the basidiomycete fungus Pycnoporus cinnabarinus at three different concentrations and pH conditions, and with and without the chemical mediator 1-hydroxybenzotriazole (HBT). Laccase activity was tested in the presence and absence of kraft lignin. The optimum pH of PciLac was initially 4.0 in the presence and absence of lignin, but at incubation times over 6 h, higher activities were found at pH 4.5 in the presence of lignin. Structural changes in lignin were investigated by Fourier-transform infrared spectroscopy (FTIR) with differential scanning calorimetry (DSC), and solvent-extractable fractions were analyzed using high-performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). The FTIR spectral data were analyzed with two successive multivariate series using principal component analysis (PCA) and ANOVA statistical analysis to identify the best conditions for the largest range of chemical modifications. DSC combined with modulated DSC (MDSC) revealed that the greatest effect on glass transition temperature (Tg) was obtained at 130 U g cm-1 and pH 4.5, with the laccase alone or combined with HBT. HPSEC data suggested that the laccase treatments led to concomitant phenomena of oligomerization and depolymerization, and GC-MS revealed that the reactivity of the extractable phenolic monomers depended on the conditions tested. This study demonstrates that P. cinnabarinus laccase can be used to modify marine pine kraft lignin, and that the set of analytical methods implemented here provides a valuable tool for screening enzymatic treatment conditions.


Assuntos
Lacase , Polyporaceae , Lacase/química , Lignina/química
3.
Mar Drugs ; 21(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233495

RESUMO

Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.


Assuntos
Phaeophyceae , Sargassum , Alga Marinha , Sargassum/química , Alginatos/química , Lignina/farmacologia , Peso Molecular , Phaeophyceae/química , Alga Marinha/química , Estresse Oxidativo
4.
Carbohydr Polym ; 277: 118820, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893237

RESUMO

In this present work, we developed a phenol grafted polyglucuronic acid (PGU) and investigated the usefulness in tissue engineering field by using this derivative as a bioink component allowing gelation in extrusion-based 3D bioprinting. The PGU derivative was obtained by conjugating with tyramine, and the aqueous solution of the derivative was curable through a horseradish peroxidase (HRP)-catalyzed reaction. From 2.0 w/v% solution of the derivative containing 5 U/mL HRP, hydrogel constructs were successfully obtained with a good shape fidelity to blueprints. Mouse fibroblasts and human hepatoma cells enclosed in the printed constructs showed about 95% viability the day after printing and survived for 11 days of study without a remarkable decrease in viability. These results demonstrate the great potential of the PGU derivative in tissue engineering field especially as an ink component of extrusion-based 3D bioprinting.


Assuntos
Bioimpressão , Ácido Glucurônico/química , Tinta , Polímeros/química , Animais , Linhagem Celular , Ácido Glucurônico/síntese química , Ácido Glucurônico/isolamento & purificação , Camundongos , Estrutura Molecular , Polímeros/síntese química , Polímeros/isolamento & purificação
5.
Mar Drugs ; 18(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086600

RESUMO

Polysaccharides extracted from marine algae have attracted much attention due to their biotechnological applications, including therapeutics, cosmetics, and mainly in agriculture and horticulture as biostimulants, biofertilizers, and stimulators of the natural defenses of plants. This study aimed to evaluate the ability of alginate isolated from Bifurcaria bifurcata from the Moroccan coast and oligoalginates derivatives to stimulate the natural defenses of tomato seedlings. Elicitation was carried out by the internodal injection of bioelicitor solutions. The elicitor capacities were evaluated by monitoring the activity of phenylalanine ammonia-lyase (PAL) as well as polyphenols content in the leaves located above the elicitation site for 5 days. Alginate and oligoalginates treatments triggered plant defense responses, which showed their capacity to significantly induce the PAL activity and phenolic compounds accumulation in the leaves of tomato seedlings. Elicitation by alginates and oligoalginates showed an intensive induction of PAL activity, increasing from 12 h of treatment and remaining at high levels throughout the period of treatment. The amount of polyphenols in the leaves was increased rapidly and strongly from 12 h of elicitation by both saccharide solutions, representing peaks value after 24 h of application. Oligoalginates exhibited an effective elicitor capacity in polyphenols accumulation compared to alginate polymers. The alginate and oligosaccharides derivatives revealed a similar elicitor capacity in PAL activity whereas the accumulation of phenolic compounds showed a differential effect. Polysaccharides extracted from the brown seaweed Bifurcaria bifurcate and oligosaccharides derivatives induced significantly the phenylpropanoid metabolism in tomato seedlings. These results contribute to the valorization of marine biomass as a potential bioresource for plant protection against phytopathogens in the context of eco-sustainable green technology.


Assuntos
Alginatos/farmacologia , Oligossacarídeos/farmacologia , Phaeophyceae/química , Substâncias Protetoras/farmacologia , Plântula/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Alginatos/química , Alginatos/isolamento & purificação , Marrocos , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Fenilalanina Amônia-Liase/análise , Fenilalanina Amônia-Liase/efeitos dos fármacos , Fenilalanina Amônia-Liase/isolamento & purificação , Folhas de Planta/química , Polifenóis/análise , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Metabolismo Secundário , Plântula/química
6.
DNA Repair (Amst) ; 48: 8-16, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793508

RESUMO

BACKGROUND: Poly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. OBSERVATIONS: Strand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. CONCLUSIONS: PARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Macrófagos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Animais , Bleomicina/farmacologia , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
7.
Biochimie ; 89(8): 988-1001, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17524546

RESUMO

The consequences of aging are characterized by a decline in the main cellular functions, including those of the mitochondria. Although these consequences have been much studied, efforts have often focused solely on a few parameters used to assess the "state" of mitochondrial function during aging. We performed comparative measurements of several parameters in young (a few days) and old (8 and 12 weeks) adult male Drosophila melanogaster: respiratory complex activities, mitochondrial respiration, ATP synthesis, lipid composition of the inner membrane, concentrations of respiratory complex subunits, expression of genes (nuclear and mitochondrial) coding for mitochondrial proteins. Our results show that, in the mitochondria of "old" flies, the activities of three respiratory complexes (I, III, IV) are greatly diminished, ATP synthesis is decreased, and the lipid composition of the inner membrane (fatty acids, cardiolipin) is modified. However, the respiration rate and subunit concentrations measured by Western blot are unaffected. Although cellular mitochondrial DNA (mtDNA) content remains constant, there is a decrease in concentrations of nuclear and mitochondrial transcripts apparently coordinated. The expression of nuclear genes encoding the transcription factors TFAM, TFB1, TFB2, and DmTTF, which are essential for the maintenance and expression of mtDNA are also decreased. The decrease in nuclear and mitochondrial transcript concentrations may be one of the principal effects of aging on mitochondria, and could explain observed decreases in mitochondrial efficiency.


Assuntos
Envelhecimento/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA/biossíntese , Trifosfato de Adenosina/biossíntese , Envelhecimento/genética , Animais , DNA Mitocondrial/análise , Regulação da Expressão Gênica , Genes Mitocondriais , Masculino , Mitocôndrias/enzimologia , RNA Mensageiro/metabolismo , RNA Mitocondrial , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA