Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861292

RESUMO

Millions suffer from incurable lung diseases, and the donor lung shortage hampers organ transplants. Generating the whole organ in conjunction with the thymus is a significant milestone for organ transplantation because the thymus is the central organ to educate immune cells. Using lineage-tracing mice and human pluripotent stem cell (PSC)-derived lung-directed differentiation, we revealed that gastrulating Foxa2 lineage contributed to both lung mesenchyme and epithelium formation. Interestingly, Foxa2 lineage-derived cells in the lung mesenchyme progressively increased and occupied more than half of the mesenchyme niche, including endothelial cells, during lung development. Foxa2 promoter-driven, conditional Fgfr2 gene depletion caused the lung and thymus agenesis phenotype in mice. Wild-type donor mouse PSCs injected into their blastocysts rescued this phenotype by complementing the Fgfr2-defective niche in the lung epithelium and mesenchyme and thymic epithelium. Donor cell is shown to replace the entire lung epithelial and robust mesenchymal niche during lung development, efficiently complementing the nearly entire lung niche. Importantly, those mice survived until adulthood with normal lung function. These results suggest that our Foxa2 lineage-based model is unique for the progressive mobilization of donor cells into both epithelial and mesenchymal lung niches and thymus generation, which can provide critical insights into studying lung transplantation post-transplantation shortly.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Camundongos , Humanos , Animais , Adulto , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Pulmão , Blastocisto/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
2.
Front Pharmacol ; 14: 1158222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101545

RESUMO

Introduction: Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes. Methods: Induced pluripotent stem cells (iPSCs) from two healthy donors were differentiated into cardiac myocytes (iPSC-CMs), and cells were treated with a panel of 26 FDA-approved TKIs. Drug-induced changes in gene expression were quantified using mRNA-seq, changes in gene expression were integrated into a mechanistic mathematical model of electrophysiology and contraction, and simulation results were used to predict physiological outcomes. Results: Experimental recordings of action potentials, intracellular calcium, and contraction in iPSC-CMs demonstrated that modeling predictions were accurate, with 81% of modeling predictions across the two cell lines confirmed experimentally. Surprisingly, simulations of how TKI-treated iPSC-CMs would respond to an additional arrhythmogenic insult, namely, hypokalemia, predicted dramatic differences between cell lines in how drugs affected arrhythmia susceptibility, and these predictions were confirmed experimentally. Computational analysis revealed that differences between cell lines in the upregulation or downregulation of particular ion channels could explain how TKI-treated cells responded differently to hypokalemia. Discussion: Overall, the study identifies transcriptional mechanisms underlying cardiotoxicity caused by TKIs, and illustrates a novel approach for integrating transcriptomics with mechanistic mathematical models to generate experimentally testable, individual-specific predictions of adverse event risk.

3.
Nat Biotechnol ; 29(11): 1011-8, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020386

RESUMO

To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.


Assuntos
Antígenos de Diferenciação/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Receptores Imunológicos/metabolismo , Antígenos de Superfície/análise , Biomarcadores/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo
4.
Cell Stem Cell ; 8(2): 228-40, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295278

RESUMO

Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.


Assuntos
Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Development ; 135(14): 2455-65, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550708

RESUMO

The c-Myc protein has been implicated in playing a pivotal role in regulating the expression of a large number of genes involved in many aspects of cellular function. Consistent with this view, embryos lacking the c-myc gene exhibit severe developmental defects and die before midgestation. Here, we show that Sox2Cre-mediated deletion of the conditional c-myc(flox) allele specifically in the epiblast (hence trophoectoderm and primitive endoderm structures are wild type) rescues the majority of developmental abnormalities previously characterized in c-myc knockout embryos, indicating that they are secondary defects and arise as a result of placental insufficiency. Epiblast-restricted c-Myc-null embryos appear morphologically normal and do not exhibit any obvious proliferation defects. Nonetheless, these embryos are severely anemic and die before E12. c-Myc-deficient embryos exhibit fetal liver hypoplasia, apoptosis of erythrocyte precursors and functionally defective definitive hematopoietic stem/progenitor cells. Specific deletion of c-myc(flox) in hemogenic or hepatocytic lineages validate the hematopoietic-specific requirement of c-Myc in the embryo proper and provide in vivo evidence to support a synergism between hematopoietic and liver development. Our results reveal for the first time that physiological levels of c-Myc are essential for cell survival and demonstrate that, in contrast to most other embryonic lineages, erythroblasts and hematopoietic stem/progenitor cells are particularly dependent on c-Myc function.


Assuntos
Eritroblastos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Placenta/fisiologia , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/fisiologia , Alelos , Animais , Sobrevivência Celular , Eritroblastos/citologia , Feminino , Células-Tronco Hematopoéticas/citologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Morfogênese , Gravidez , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA