Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(9): e57020, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37424431

RESUMO

Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Redes Reguladoras de Genes
2.
Cell Rep ; 29(6): 1410-1418.e6, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693883

RESUMO

Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.


Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Embrião de Mamíferos/metabolismo , Glicogênio/metabolismo , Gotículas Lipídicas/metabolismo , Adipócitos Marrons/ultraestrutura , Tecido Adiposo Marrom/embriologia , Tecido Adiposo Marrom/ultraestrutura , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicogênio/ultraestrutura , Humanos , Gotículas Lipídicas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , PPAR gama/genética , PPAR gama/metabolismo , RNA Interferente Pequeno , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 115(47): E11033-E11042, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397120

RESUMO

The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.


Assuntos
Insulina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Animais , Linhagem Celular Tumoral , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
4.
J Hepatol ; 69(5): 1099-1109, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29981427

RESUMO

BACKGROUND & AIMS: Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis. METHODS: The role of FXR in hepatic gluconeogenesis was assessed in vivo and in mouse primary hepatocytes. Gene expression patterns in response to glucagon and FXR agonists were characterized by quantitative reverse transcription PCR and microarray analysis. FXR phosphorylation by protein kinase A was determined by mass spectrometry. The interaction of FOXA2 with FXR was identified by cistromic approaches and in vitro protein-protein interaction assays. The functional impact of the crosstalk between FXR, the PKA and FOXA2 signaling pathways was assessed by site-directed mutagenesis, transactivation assays and restoration of FXR expression in FXR-deficient hepatocytes in which gene expression and glucose production were assessed. RESULTS: FXR positively regulates hepatic glucose production through two regulatory arms, the first one involving protein kinase A-mediated phosphorylation of FXR, which allowed for the synergistic activation of gluconeogenic genes by glucagon, agonist-activated FXR and CREB. The second arm involves the inhibition of FXR's ability to induce the anti-gluconeogenic nuclear receptor SHP by the glucagon-activated FOXA2 transcription factor, which physically interacts with FXR. Additionally, knockdown of Foxa2 did not alter glucagon-induced and FXR agonist enhanced expression of gluconeogenic genes, suggesting that the PKA and FOXA2 pathways regulate distinct subsets of FXR responsive genes. CONCLUSIONS: Thus, hepatic glucose production is regulated during physiological fasting by FXR, which integrates the glucagon/cAMP signal and the FOXA2 signal, by being post-translationally modified, and by engaging in protein-protein interactions, respectively. LAY SUMMARY: Activation of the nuclear bile acid receptor FXR regulates gene expression networks, controlling lipid, cholesterol and glucose metabolism, which are mostly effective after eating. Whether FXR exerts critical functions during fasting is unknown. The results of this study show that FXR transcriptional activity is regulated by the glucagon/protein kinase A and the FOXA2 signaling pathways, which act on FXR through phosphorylation and protein-protein interactions, respectively, to increase hepatic glucose synthesis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Jejum/metabolismo , Gluconeogênese , Fator 3-beta Nuclear de Hepatócito/fisiologia , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Regulação da Expressão Gênica , Glucagon/fisiologia , Glucose/metabolismo , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
5.
Sci Rep ; 7(1): 14087, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29075020

RESUMO

Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PPAR gama/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Adulto , Animais , Índice de Massa Corporal , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA