Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400099, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749920

RESUMO

Two innovative early/late Ti-Pt-heterobimetallic complexes were synthesized, characterized, and screened in cell-based assays using several human (SW480 and MDA-MB-231) and murine cancer cell lines (CT26 and EMT6) as well as a non-cancerous cell line (HMEC). The combination of the two metals - titanium(IV) and platinum (IV) - in a single molecule led to a synergistic biological activity (higher anti-proliferative properties than a mixture of each of the corresponding monometallic complexes). This study also investigated the benefits of associating a metal-free terpyridine moiety (with intrinsic biological activity) with a water-soluble titanocene fragment. The present work reveals that these combinations results in water-soluble titanocene compounds displaying an anti-proliferative activity down to the submicromolar level. One of these complexes induced an antitumor effect in vivo in CT26 tumor bearing BALB/C mice. The terpyridine moiety was also used to track the complex in vitro by multiphoton microscopy imaging.

2.
Nat Struct Mol Biol ; 30(9): 1265-1274, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524969

RESUMO

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2BIR2 and BIRC2BIR3, to the histone H3 tail and report the structure of the BIRC2BIR3-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2. Overexpression of BIRC2 delays DNA damage repair and recovery of the cell-cycle progression. We describe the structural mechanism for targeting of BIRC2BIR3 by a potent but biochemically uncharacterized small molecule inhibitor LCL161 and demonstrate that LCL161 disrupts the association of endogenous BIRC2 with H3 and stimulates cell death in cancer cells. We further show that LCL161 mediates degradation of BIRC2 in human immunodeficiency virus type 1-infected human CD4+ T cells. Our findings provide mechanistic insights into the nuclear accumulation of and blocking BIRC2.


Assuntos
Proteínas Inibidoras de Apoptose , Tiazóis , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Apoptose/genética , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Oncogene ; 42(3): 198-208, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400972

RESUMO

Cellular inhibitor of apoptosis-1 (cIAP1) is a signaling regulator with oncogenic properties. It is involved in the regulation of signaling pathways controlling inflammation, cell survival, proliferation, differentiation and motility. It is recruited into membrane-receptor-associated signaling complexes thanks to the molecular adaptor TRAF2. However, the cIAP1/TRAF2 complex exists, independently of receptor engagement, in several subcellular compartments. The present work strengthens the importance of TRAF2 in the oncogenic properties of cIAP1. cIAPs-deficient mouse embryonic fibroblasts (MEFs) were transformed using the HRas-V12 oncogene. Re-expression of cIAP1 enhanced tumor growth in a nude mice xenograft model, and promoted lung tumor nodes formation. Deletion or mutation of the TRAF2-binding site completely abolished the oncogenic properties of cIAP1. Further, cIAP1 mediated the clustering of TRAF2, which was sufficient to stimulate tumor growth. Our TRAF2 interactome analysis showed that cIAP1 was critical for TRAF2 to bind to its protein partners. Thus, cIAP1 and TRAF2 would be two essential subunits of a signaling complex promoting a pro-tumoral signal. cIAP1/TRAF2 promoted the activation of the canonical NF-κB and ERK1/2 signaling pathways. NF-κB-dependent production of IL-6 triggered the activation of the JAK/STAT3 axis in an autocrine manner. Inhibition or downregulation of STAT3 specifically compromised the growth of cIAP1-restored MEFs but not that of MEFs expressing a cIAP1-mutant and treating mice with the STAT3 inhibitor niclosamide completely abrogated cIAP1/TRAF2-mediated tumor growth. Altogether, we demonstrate that cIAP1/TRAF2 binding is essential to promote tumor growth via the activation of the JAK/STAT3 signaling pathway.


Assuntos
NF-kappa B , Neoplasias , Humanos , Animais , Camundongos , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , NF-kappa B/metabolismo , Camundongos Nus , Fibroblastos/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Biomolecules ; 12(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883457

RESUMO

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Assuntos
Caenorhabditis elegans , Neoplasias , Animais , Apoptose , Morte Celular , Humanos , Necrose
5.
Biomolecules ; 12(2)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35204822

RESUMO

Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of the IAP family. Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling pathways, modify signal transduction pathways by changing protein-protein interaction networks, and stop signal transduction by promoting the degradation of critical components of signaling pathways. Thus, cIAP1 appears to be a potent determinant of the response of cells, enabling their rapid adaptation to changing environmental conditions or intra- or extracellular stresses. It is expressed in almost all tissues, found in the cytoplasm, membrane and/or nucleus of cells. cIAP1 regulates innate immunity by controlling signaling pathways mediated by tumor necrosis factor receptor superfamily (TNFRs), some cytokine receptors and pattern recognition-receptors (PRRs). Although less documented, cIAP1 has also been involved in the regulation of cell migration and in the control of transcriptional programs.


Assuntos
Apoptose , Núcleo Celular , Proteínas Inibidoras de Apoptose , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Ubiquitinação
6.
Cells ; 9(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365919

RESUMO

Over the last decade, the E3-ubiquitine ligases from IAP (Inhibitor of Apoptosis) family have emerged as potent regulators of immune response. In immune cells, they control signaling pathways driving differentiation and inflammation in response to stimulation of tumor necrosis factor receptor (TNFR) family, pattern-recognition receptors (PRRs), and some cytokine receptors. They are able to control the activity, the cellular fate, or the stability of actors of signaling pathways, acting at different levels from components of receptor-associated multiprotein complexes to signaling effectors and transcription factors, as well as cytoskeleton regulators. Much less is known about ubiquitination substrates involved in non-immune signaling pathways. This review aimed to present IAP ubiquitination substrates and the role of IAP-mediated ubiquitination in regulating signaling pathways.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Transdução de Sinais , Ubiquitinação , Animais , Apoptose , Humanos , Proteínas Inibidoras de Apoptose/química , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
7.
Oncogene ; 39(3): 516-529, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541194

RESUMO

Cells are repeatedly exposed to environmental or endogenous stresses that can alter normal cell behavior and increase cell vulnerability. In order to ensure tissue integrity and function, cells cope with cellular injuries by adapting their metabolism, protecting essential intracellular constituents, inhibiting cell death signaling pathways and activating those devoted to damage repair. The molecular chaperones of the heat-shock protein (HSP) family are critical effectors of this adaptive response. They protect intracellular proteins from misfolding or aggregation, inhibit cell death signaling cascades and preserve the intracellular signaling pathways that are essential for cell survival. Most HSPs are rapidly overexpressed in response to cellular injuries including genotoxic stress. DNA damage can dramatically alter cell behavior and contribute to a number of diseases including developmental defects, neurodegenerative disorders, and cancer. Thus, the ability of cells to repair DNA damage is essential for preserving cell integrity. DNA damage activates a coordinated response that includes detecting DNA lesions before their transmission to daughter cells, blocking cell cycle progression and DNA replication and repairing the damage. Although the role of HSPs in proteins homeostasis and cell death, especially apoptosis has been widely reported, much less is known about their function in DNA repair. This review aims to present the role of HSPs in DNA repair signaling pathways.


Assuntos
Anormalidades Congênitas/genética , Reparo do DNA , Proteínas de Choque Térmico/metabolismo , Neoplasias/genética , Doenças Neurodegenerativas/genética , Animais , Apoptose/genética , Sobrevivência Celular , Anormalidades Congênitas/patologia , Dano ao DNA , Instabilidade Genômica , Humanos , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Transdução de Sinais/genética
8.
Cell Death Differ ; 27(1): 117-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31068676

RESUMO

Pro-survival stress-inducible chaperone HSP110 is the only HSP for which a mutation has been found in a cancer. Multicenter clinical studies demonstrated a direct association between HSP110 inactivating mutation presence and excellent prognosis in colorectal cancer patients. Here, we have combined crystallographic studies on human HSP110 and in silico modeling to identify HSP110 inhibitors that could be used in colorectal cancer therapy. Two molecules (foldamers 33 and 52), binding to the same cleft of HSP110 nucleotide-binding domain, were selected from a chemical library (by co-immunoprecipitation, AlphaScreening, Interference-Biolayer, Duo-link). These molecules block HSP110 chaperone anti-aggregation activity and HSP110 association to its client protein STAT3, thereby inhibiting STAT3 phosphorylation and colorectal cancer cell growth. These effects were strongly decreased in HSP110 knockdown cells. Foldamer's 33 ability to inhibit tumor growth was confirmed in two colorectal cancer animal models. Although tumor cell death (apoptosis) was noted after treatment of the animals with foldamer 33, no apparent toxicity was observed, notably in epithelial cells from intestinal crypts. Taken together, we identified the first HSP110 inhibitor, a possible drug-candidate for colorectal cancer patients whose unfavorable outcome is associated to HSP110.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Proteínas de Choque Térmico HSP110/antagonistas & inibidores , Animais , Antineoplásicos/toxicidade , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cristalografia por Raios X , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Camundongos , Modelos Moleculares , Fator de Transcrição STAT3/metabolismo
10.
Oncogene ; 38(15): 2767-2777, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30542121

RESUMO

A multicenter clinical study demonstrated the presence of a loss-of-function HSP110 mutation in about 15% of colorectal cancers, which resulted from an alternative splicing and was produced at the detriment of wild-type HSP110. Patients expressing low levels of wild-type HSP110 had excellent outcomes (i.e. response to an oxaliplatin-based chemotherapy). Here, we show in vitro, in vivo, and in patients' biopsies that HSP110 co-localizes with DNA damage (γ-H2AX). In colorectal cancer cells, HSP110 translocates into the nucleus upon treatment with genotoxic chemotherapy such as oxaliplatin. Furthermore, we show that HSP110 interacts with the Ku70/Ku80 heterodimer, an essential element of the non-homologous end joining (NHEJ) repair machinery. We also demonstrate by evaluating the resolved 53BP1 foci that depletion in HSP110 impairs repair steps of the NHEJ pathway, which is associated with an increase in DNA double-strand breaks and in the cells' sensitivity to oxaliplatin. HSP110-depleted cells sensitization to oxaliplatin-induced DNA damage is abolished upon re-expression of HSP110. Confirming a role for HSP110 in DNA non-homologous repair, SCR7 and NU7026, two inhibitors of the NHEJ pathway, circumvents HSP110-induced resistance to chemotherapy. In conclusion, HSP110 through its interaction with the Ku70/80 heterodimer may participate in DNA repair, thereby inducing a protection against genotoxic therapy.


Assuntos
Núcleo Celular/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Choque Térmico HSP110/genética , Mutagênicos/farmacologia , Translocação Genética/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Células HCT116 , Humanos , Autoantígeno Ku/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Oxaliplatina/farmacologia , Translocação Genética/efeitos dos fármacos
11.
PLoS One ; 13(10): e0206253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30359437

RESUMO

The cellular inhibitor of apoptosis 1 (cIAP1) is an E3-ubiquitin ligase that regulates cell signaling pathways involved in fundamental cellular processes including cell death, cell proliferation, cell differentiation and inflammation. It recruits ubiquitination substrates thanks to the presence of three baculoviral IAP repeat (BIR) domains at its N-terminal extremity. We previously demonstrated that cIAP1 promoted the ubiquitination of the E2 factor 1 (E2F1) transcription factor. Moreover, we showed that cIAP1 was required for E2F1 stabilization during the S phase of cell cycle and in response to DNA damage. Here, we report that E2F1 binds within the cIAP1 BIR3 domain. The BIR3 contains a surface hydrophobic groove that specifically anchors a conserved IAP binding motif (IBM) found in a number of intracellular proteins including Smac. The Smac N-7 peptide that includes the IBM, as well as a Smac mimetic, competed with E2F1 for interaction with cIAP1 demonstrating the importance of the BIR surface hydrophobic groove. We demonstrated that the first alpha-helix of BIR3 was required for E2F1 binding, as well as for the binding of Smac and Smac mimetics. Overexpression of cIAP1 modified the ubiquitination profile of E2F1, increasing the ratio of E2F1 conjugated with K11- and K63-linked ubiquitin chains, and decreasing the proportion of E2F1 modified by K48-linked ubiquitin chains. ChIP-seq analysis demonstrated that cIAP1 was required for the recruitment of E2F1 onto chromatin. Lastly, we identified an E2F-binding site on the cIAP1-encoding birc2 gene promoter, suggesting a retro-control regulation loop.


Assuntos
Cromatina/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Sítios de Ligação , Comunicação Celular/genética , Linhagem Celular , Fator de Transcrição E2F1/química , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/genética , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Ubiquitinação
12.
EMBO Rep ; 19(2): 234-243, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233828

RESUMO

E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.


Assuntos
Morte Celular , Fator de Transcrição E2F1/metabolismo , Proteína bcl-X/metabolismo , Apoptose , Linhagem Celular Tumoral , Fator de Transcrição E2F1/química , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transcrição Gênica , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/química
13.
Int J Mol Sci ; 18(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048367

RESUMO

Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly regulated over the course of the cell cycle progression and in response to genotoxic stress. I discuss here the most recent evidence demonstrating the role of ubiquitination in E2F1's regulation.


Assuntos
Fator de Transcrição E2F1/metabolismo , Ubiquitinação , Animais , Dano ao DNA , Fator de Transcrição E2F1/genética , Humanos
14.
Cell Death Dis ; 8(5): e2816, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28542143

RESUMO

The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitination and uncover a novel function for the E3-ubiquitin ligase cIAP1.


Assuntos
Dano ao DNA , Fator de Transcrição E2F1/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Lisina/metabolismo , Poliubiquitina/metabolismo , Fase S , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Arginina/metabolismo , Humanos , Metilação , Camundongos , Estabilidade Proteica , Relação Estrutura-Atividade , Transcrição Gênica
15.
Crit Rev Oncog ; 21(5-6): 399-411, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29431085

RESUMO

The inhibitor of apoptosis (IAP) family members are potent regulators of cell homeostasis able to regulate several fundamental cellular processes that include cell death, cell proliferation, cell differentiation, and inflammation. Regarding this broad spectrum of activity, it is now becoming clear that some members of the family possess oncogenic properties. Analysis of genomic database from tumor sequencing studies has revealed a number of genetic alterations affecting some IAP genes and resulting in gain or loss of function. In this review, we discuss the importance of IAP alterations in cell transformation and their link with key oncogenic pathways, focusing on nuclear factor-kappa B (NF-κB)-activating signaling pathways. Then we highlight the therapeutic potential of IAP antagonists and nitric oxide (NO) donors as inhibitors of NF-κB in anticancer therapy.

16.
Dalton Trans ; 44(11): 4874-83, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25492395

RESUMO

Four new red BODIPY-gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.


Assuntos
Ouro/química , Imagem Óptica/métodos , Compostos Organometálicos/uso terapêutico , Transporte Biológico , Bombesina/metabolismo , Compostos de Boro/química , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo
17.
Onco Targets Ther ; 9: 1285-304, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24092992

RESUMO

The inhibitors of apoptosis (IAPs) constitute a family of proteins involved in the regulation of various cellular processes, including cell death, immune and inflammatory responses, cell proliferation, cell differentiation, and cell motility. There is accumulating evidence supporting IAP-targeting in tumors: IAPs regulate various cellular processes that contribute to tumor development, such as cell death, cell proliferation, and cell migration; their expression is increased in a number of human tumor samples, and IAP overexpression has been correlated with tumor growth, and poor prognosis or low response to treatment; and IAP expression can be rapidly induced in response to chemotherapy or radiotherapy because of the presence of an internal ribosome entry site (IRES)-dependent mechanism of translation initiation, which could contribute to resistance to antitumor therapy. The development of IAP antagonists is an important challenge and was subject to intense research over the past decade. Six molecules are currently in clinical trials. This review focuses on the role of IAPs in tumors and the development of IAP-targeting molecules for anticancer therapy.

18.
Med Sci (Paris) ; 28(1): 69-75, 2012 Jan.
Artigo em Francês | MEDLINE | ID: mdl-22289833

RESUMO

The function of IAP has long been limited to an inhibition of apoptosis through their capacity to bind some caspases. Since the expression of these proteins is altered in some tumor samples, IAPs are targets for anticancer therapy and many small molecules have been designed for their capacity to inhibit IAP-caspase interaction. Unexpectedly, these molecules appeared to significantly affect NF-κB activation. In this review, we will discuss the central role of cIAP1, cIAP2 and XIAP in the regulation of NF-κB activating signaling pathways.


Assuntos
Regulação da Expressão Gênica , Proteínas Inibidoras de Apoptose/fisiologia , NF-kappa B/fisiologia , Transdução de Sinais/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/fisiologia , Animais , Antineoplásicos/farmacologia , Proteínas Morfogenéticas Ósseas/fisiologia , Dano ao DNA , Proteínas de Drosophila/fisiologia , Humanos , Imunidade Inata/fisiologia , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/genética , Mamíferos , Modelos Genéticos , Terapia de Alvo Molecular , Família Multigênica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/fisiologia , Estrutura Terciária de Proteína , Receptores do Fator de Necrose Tumoral/fisiologia , Relação Estrutura-Atividade , Transcrição Gênica , Fator de Crescimento Transformador beta/fisiologia , Proteínas Virais/fisiologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
19.
J Biol Chem ; 286(30): 26406-17, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21653699

RESUMO

The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.


Assuntos
Núcleo Celular/metabolismo , Ciclina A/biossíntese , Ciclina E/biossíntese , Fator de Transcrição E2F1/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Elementos de Resposta/fisiologia , Transcrição Gênica/fisiologia , Animais , Núcleo Celular/genética , Proliferação de Células , Ciclina A/genética , Ciclina E/genética , Fator de Transcrição E2F1/genética , Inativação Gênica , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Estrutura Terciária de Proteína
20.
Ann N Y Acad Sci ; 1010: 354-7, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15033751

RESUMO

The reciprocal activation of amphiregulin (AR) and insulin-like growth factor-1 (IGF1) pathways has been shown to induce inhibition of serum deprivation apoptosis in non-small cell lung cancer (NSCLC) cell lines H358 and H322. We demonstrated that AR activated the IGF1 receptor (IGF1-R), which in turn induced the secretion of AR and IGF1. Transactivation of the IGF1-R by AR is independent of its binding to EGFR. Thus, AR can inhibit apoptosis in NSCLC cells through an IGF1-R-dependent pathway.


Assuntos
Apoptose/efeitos dos fármacos , Glicoproteínas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Receptor IGF Tipo 1/fisiologia , Anfirregulina , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Família de Proteínas EGF , Humanos , Neoplasias Pulmonares , Receptor IGF Tipo 1/efeitos dos fármacos , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA