Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 590-604, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38174962

RESUMO

The application of liver organoids is very promising in the field of liver tissue engineering; however, it is still facing some limitations. One of the current major limitations is the matrix in which they are cultured. The mainly undefined and murine-originated tumor matrices derived from Engelbreth-Holm-Swarm (EHS) sarcoma, such as Matrigel, are still the standard culturing matrices for expansion and differentiation of organoids toward hepatocyte-like cells, which will obstruct its future clinical application potential. In this study, we exploited the use of newly developed highly defined hydrogels as potential matrices for the culture of liver organoids and compared them to Matrigel and two hydrogels that were already researched in the field of organoid research [i.e., polyisocyanopeptides, enriched with laminin-entactin complex (PIC-LEC) and gelatin methacryloyl (GelMA)]. The newly developed hydrogels are materials that have a physicochemical resemblance with native liver tissue. Norbornene-modified dextran cross-linked with thiolated gelatin (DexNB-GelSH) has a swelling ratio and macro- and microscale properties that highly mimic liver tissue. Norbornene-modified chondroitin sulfate cross-linked with thiolated gelatin (CSNB-GelSH) contains chondroitin sulfate, which is a glycosaminoglycan (GAG) that is present in the liver ECM. Furthermore, CSNB-GelSH hydrogels with different mechanical properties were evaluated. Bipotent intrahepatic cholangiocyte organoids (ICOs) were applied in this work and encapsulated in these materials. This research revealed that the newly developed materials outperformed Matrigel, PIC-LEC, and GelMA in the differentiation of ICOs toward hepatocyte-like cells. Furthermore, some trends indicate that an interplay of both the chemical composition and the mechanical properties has an influence on the relative expression of certain hepatocyte markers. Both DexNB-GelSH and CSNB-GelSH showed promising results for the expansion and differentiation of intrahepatic cholangiocyte organoids. The stiffest CSNB-GelSH hydrogel even significantly outperformed Matrigel based on ALB, BSEP, and CYP3A4 gene expression, being three important hepatocyte markers.


Assuntos
Gelatina , Hidrogéis , Camundongos , Animais , Gelatina/química , Hidrogéis/farmacologia , Hidrogéis/química , Sulfatos de Condroitina , Organoides , Engenharia Tecidual/métodos , Norbornanos
2.
Macromol Biosci ; 24(3): e2300202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37913549

RESUMO

Infections are still a major cause of morbidity in burn wounds. Although silver has been used strongly in past centuries as an anti-bacterial, it can lead to allergic reactions, bacterial resistance, and delayed wound healing. Iodine-based antibacterials are becoming an interesting alternative. In this work, the effect of complexation with poly(vinyl pyrrolidone) (PVP) and poly(ethylene oxide) (PEO)-based polymers is explored by using different acrylate-endcapped urethane-based poly(ethylene glycol) (AUP) polymers, varying the molar mass (MM) of the poly(ethylene glycol) (PEG) backbone, with possible addition of PVP. The higher MM AUP outperforms the swelling potential of commercial wound dressings such as Kaltostat, Aquacel Ag, and Hydrosorb and all MM show superior mechanical properties. The addition of iodine to the polymers is compared to Iso-Betadine Tulle (IBT). Interestingly, the addition of PVP does not lead to increased iodine complexation compared to the blank AUP polymers, while all have a prolonged iodine release compared to the IBT, which leads to a burst release. The observed prolonged release also leads to larger inhibition zones during antibacterial tests. Complexing iodine in AUP polymers with or without PVP leads to antimicrobial wound dressings which may hold potential for future application to treat infected wounds.


Assuntos
Iodo , Iodo/farmacologia , Uretana , Antibacterianos/farmacologia , Polímeros , Povidona-Iodo/farmacologia , Bandagens , Polietilenoglicóis/farmacologia , Acrilatos , Hidrogéis
3.
J Mater Chem B ; 11(42): 10158-10173, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850250

RESUMO

Cardiovascular diseases are the leading cause of death worldwide. Treatments for occluded arteries include balloon angioplasty with or without stenting and bypass grafting surgery. Poly(ethylene terephthalate) is frequently used as a vascular graft material, but its high stiffness leads to compliance mismatch with the human blood vessels, resulting in altered hemodynamics, thrombus formation and graft failure. Poly(alkylene terephthalate)s (PATs) with longer alkyl chain lengths hold great potential for improving the compliance. In this work, the effect of the polymer molar mass and the alkyl chain length on the surface roughness and wettability of spin-coated PAT films was investigated, as well as the endothelial cell adhesion and proliferation on these samples. We found that surface roughness generally increases with increasing molar mass and alkyl chain length, while no trend for the wettability could be observed. All investigated PATs are non-cytotoxic and support endothelial cell adhesion and growth. For some PATs, the endothelial cells even reorganized into a tubular-like structure, suggesting angiogenic maturation. In conclusion, this research demonstrates the biocompatibility of PATs and their potential to be applied as materials serving cardiovascular applications.


Assuntos
Células Endoteliais , Polímeros , Humanos , Adesão Celular , Polímeros/farmacologia , Polímeros/química , Propriedades de Superfície
4.
Macromol Biosci ; 23(3): e2200341, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36404646

RESUMO

Most commercial dressings with moderate to high exudate uptake capacities are mechanically weaker and/or require a secondary dressing. The current research article focuses on the development of hydrogel-based wound dressings combining mechanical strength with high exudate absorption capacities using acrylate-endcapped urethane-based precursors (AUPs). AUPs with varying poly(ethylene glycol) backbone molar masses (10 and 20 kg mol-1 ) and endcap chemistries are successfully synthesized in toluene, subsequently processed into UV-cured hydrogel sheets and are benchmarked against several commercial wound dressings (Hydrosorb, Kaltostat, and Mepilex Ag). The AUP materials show high gel fractions (>90%) together with strong swelling degrees in water, phosphate buffered saline and simulated wound fluid (12.7-19.6 g g-1 ), as well as tunable mechanical properties (e.g., Young's modulus: 0.026-0.061 MPa). The AUPs have significantly (p < 0.05) higher swelling degrees than the tested commercial dressings, while also being mechanically resistant. The elasticity of the synthesized materials leads to an increased resistance against fatigue. The di- and hexa-acrylated AUPs show excellent in vitro biocompatibility against human foreskin fibroblasts, as evidenced by indirect MTS assays and live/dead cell assays. In conclusion, the processed AUP materials demonstrate high potential for wound healing application and can even compete with commercially available dressings.


Assuntos
Bandagens , Queimaduras , Humanos , Materiais Biocompatíveis , Polietilenoglicóis/química , Exsudatos e Transudatos , Hidrogéis/farmacologia , Hidrogéis/química
5.
J Orthop Res ; 40(3): 750-760, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33991020

RESUMO

A reinforced tubular, medicated electrospun construct was developed for deep flexor tendon repair. This construct combines mechanical strength with the release of anti-inflammatory and anti-adhesion drugs. In this study, the reinforced construct was evaluated using a rabbit model. It was compared to its components (a tubular, medicated electrospun polymer without reinforcement and a tubular braid as such) on the one hand to a modified Kessler suture as a control group. Forty New Zealand rabbits were randomly divided into two groups. Surgery was performed in the second and fourth deep flexor tendons of one hind paw of the rabbits in the two groups using four repair techniques. Biomechanical tensile testing and macroscopic and histological evaluations were performed at 3 and 8 weeks postoperatively. A two-way analysis of variance with pairwise comparisons revealed that the three experimental surgical techniques (a reinforced tubular medicated electrospun construct, tubular-medicated construct, and tubular braid as such) showed similar strength as that of a modified Kessler suture repair, which was characterized by a mean load at ultimate failure of 19.85 N (standard deviation [SD] 5.29 N) at 3 weeks and 18.15 N (SD 8.01 N) at 8 weeks. Macroscopically, a significantly different adhesion pattern was observed at the suture knots, either centrally or peripherally, depending on the technique. Histologically, a qualitative assessment showed good to excellent repair at the tendon repair site, irrespective of the applied technique. This study demonstrates that mechanical and biological repair strategies for flexor tendon repair can be successfully combined.


Assuntos
Técnicas de Sutura , Suturas , Animais , Coelhos , Fenômenos Biomecânicos , Tendões/cirurgia , Resistência à Tração
6.
Mater Sci Eng C Mater Biol Appl ; 119: 111504, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321603

RESUMO

This research aims at developing a more potent solution for deep flexor tendon repair by combining a mechanical and biological approach. A reinforced, multi-layered electrospun tubular construct is developed, composed of three layers: an inner electrospun layer containing an anti-inflammatory component (Naproxen), a middle layer of braided monofilament as reinforcement and an outer electrospun layer containing an anti-adhesion component (hyaluronic acid, HA). In a first step, a novel acrylate endcapped urethane-based precursor (AUP) is developed and characterized by measuring molar mass, acrylate content and thermo-stability. The AUP material is benchmarked against commercially available poly(ε-caprolactone) (PCL). Next, the materials are processed into multi-layered, tubular constructs with bio-active components (Naproxen and HA) using electrospinning. In vitro assays using human fibroblasts show that incorporation of the bio-active components is successful and not-cytotoxic. Moreover, tensile testing using ex vivo sheep tendons prove that the developed multi-layered constructs fulfill the required strength for tendon repair (i.e. 2.79-3.98 MPa), with an ultimate strength of 8.56 ±â€¯1.92 MPa and 8.36 ±â€¯0.57 MPa for PCL and AUP/PCL constructs respectively. In conclusion, by combining a mechanical approach (improved mechanical properties) with the incorporation of bio-active compounds (biological approach), this solution shows its potential for application in deep flexor tendon repair.


Assuntos
Ácido Hialurônico , Tendões , Animais , Fibroblastos/patologia , Ovinos , Tendões/patologia , Resistência à Tração , Aderências Teciduais/patologia
7.
J Tissue Eng Regen Med ; 14(6): 840-854, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32336037

RESUMO

For patients with soft tissue defects, repair with autologous in vitro engineered adipose tissue could be a promising alternative to current surgical therapies. A volume-persistent engineered adipose tissue construct under in vivo conditions can only be achieved by early vascularization after transplantation. The combination of 3D bioprinting technology with self-assembling microvascularized units as building blocks can potentially answer the need for a microvascular network. In the present study, co-culture spheroids combining adipose-derived stem cells (ASC) and human umbilical vein endothelial cells (HUVEC) were created with an ideal geometry for bioprinting. When applying the favourable seeding technique and condition, compact viable spheroids were obtained, demonstrating high adipogenic differentiation and capillary-like network formation after 7 and 14 days of culture, as shown by live/dead analysis, immunohistochemistry and RT-qPCR. Moreover, we were able to successfully 3D bioprint the encapsulated spheroids, resulting in compact viable spheroids presenting capillary-like structures, lipid droplets and spheroid outgrowth after 14 days of culture. This is the first study that generates viable high-throughput (pre-)vascularized adipose microtissues as building blocks for bioprinting applications using a novel ASC/HUVEC co-culture spheroid model, which enables both adipogenic differentiation while simultaneously supporting the formation of prevascular-like structures within engineered tissues in vitro.


Assuntos
Tecido Adiposo , Bioimpressão , Células Endoteliais da Veia Umbilical Humana , Microvasos , Impressão Tridimensional , Células-Tronco , Engenharia Tecidual , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Técnicas de Cocultura , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Microvasos/citologia , Microvasos/metabolismo , Pessoa de Meia-Idade , Células-Tronco/citologia , Células-Tronco/metabolismo
8.
J Mater Sci Mater Med ; 31(4): 36, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32206922

RESUMO

The increasing number of mastectomies results in a greater demand for breast reconstruction characterized by simplicity and a low complication profile. Reconstructive surgeons are investigating tissue engineering (TE) strategies to overcome the current surgical drawbacks. 3D bioprinting is the rising technique for the fabrication of large tissue constructs which provides a potential solution for unmet clinical needs in breast reconstruction building on decades of experience in autologous fat grafting, adipose-derived mesenchymal stem cell (ASC) biology and TE. A scaffold was bioprinted using encapsulated ASC spheroids in methacrylated gelatin ink (GelMA). Uniform ASC spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. ASC spheroids in adipogenic differentiation medium (ADM) were evaluated through live/dead staining, histology (HE, Oil Red O), TEM and RT-qPCR. Viable spheroids were obtained for up to 14 days post-printing and showed multilocular microvacuoles and successful differentiation toward mature adipocytes shown by gene expression analysis. Moreover, spheroids were able to assemble at random in GelMA, creating a macrotissue. Combining the advantage of microtissues to self-assemble and the controlled organization by bioprinting technologies, these ASC spheroids can be useful as building blocks for the engineering of soft tissue implants.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Bioimpressão/métodos , Gelatina/química , Células-Tronco Mesenquimais/fisiologia , Esferoides Celulares/fisiologia , Tinta , Engenharia Tecidual/métodos
9.
Macromol Biosci ; 20(4): e1900364, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077631

RESUMO

Adipose tissue engineering aims to provide solutions to patients who require tissue reconstruction following mastectomies or other soft tissue trauma. Mesenchymal stromal cells (MSCs) robustly differentiate into the adipogenic lineage and are attractive candidates for adipose tissue engineering. This work investigates whether pore size modulates adipogenic differentiation of MSCs toward identifying optimal scaffold pore size and whether pore size modulates spatial infiltration of adipogenically differentiated cells. To assess this, extrusion-based 3D printing is used to fabricate photo-crosslinkable gelatin-based scaffolds with pore sizes in the range of 200-600 µm. The adipogenic differentiation of MSCs seeded onto these scaffolds is evaluated and robust lipid droplet formation is observed across all scaffold groups as early as after day 6 of culture. Expression of adipogenic genes on scaffolds increases significantly over time, compared to TCP controls. Furthermore, it is found that the spatial distribution of cells is dependent on the scaffold pore size, with larger pores leading to a more uniform spatial distribution of adipogenically differentiated cells. Overall, these data provide first insights into the role of scaffold pore size on MSC-based adipogenic differentiation and contribute toward the rational design of biomaterials for adipose tissue engineering in 3D volumetric spaces.


Assuntos
Adipócitos/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Gelatina/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Gelatina/efeitos da radiação , Expressão Gênica , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Porosidade , Cultura Primária de Células , Impressão Tridimensional , Raios Ultravioleta
10.
Int J Biol Macromol ; 140: 929-938, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31422191

RESUMO

Current soft tissue repair techniques for women with breast cancer remain associated with several drawbacks including surgical complications and a high resorption rate for lipofilling techniques. Hence, the need to develop improved adipose tissue reconstruction strategies. Additive manufacturing can be a promising tool towards the development of patient-specific scaffolds which are able to support adipose tissue engineering. In the present work, scaffolds composed of both methacrylamide-modified gelatin (Gel-MA) and methacrylated κ-carrageenan (Car-MA), i.e. hydrogel blends, were developed using extrusion-based 3D printing in order to establish a close resemblance to the native extracellular matrix. The hydrogel blends were benchmarked to scaffolds constituting of only Gel-MA. Our results indicate that both types of scaffolds remain stable over time (21 days), are able to absorb large amounts of water and exhibit mechanical properties comparable to those of native breast tissue (2 kPa). Furthermore, a similar cell viability (> 90%) and proliferation rate after 14 days was obtained for adipose tissue-derived stem cells (ASCs) upon seeding onto both types of scaffolds. Additionally, the ASCs were able to differentiate into the adipogenic lineage on the hydrogel blend scaffolds, although their differentiation potential was lower compared to that of ASCs seeded onto the Gel-MA scaffolds.


Assuntos
Tecido Adiposo , Carragenina/química , Gelatina/química , Hidrogéis/química , Impressão Tridimensional , Regeneração , Adipogenia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Fenômenos Mecânicos , Engenharia Tecidual
11.
Front Physiol ; 9: 316, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670535

RESUMO

Lepidoptera comprise some of the most devastating herbivorous pest insects worldwide. One of the most promising novel pest control strategies is exploiting the RNA interference (RNAi) mechanism to target essential genes for knockdown and incite toxic effects in the target species without harming other organisms in the ecosystem. However, many insects are refractory to oral RNAi, often due to rapid degradation of ingested dsRNA in their digestive system. This is the case for many lepidopteran insects, including the beet armyworm Spodoptera exigua, which is characterized by a very alkaline gut environment (pH > 9.0) and a strong intestinal nucleolytic activity. In this research, guanidine-containing polymers were developed to protect dsRNA against nucleolytic degradation, specifically in high pH environments. First, their ability to protect dsRNA against nucleolytic degradation in gut juice of the beet armyworm S. exigua was investigated ex vivo. Polymers with high guanidine content provided a strong protection against nucleolytic degradation at pH 11, protecting the dsRNA for up to 30 h. Next, cellular uptake of the dsRNA and the polyplexes in lepidopteran CF203 midgut cells was investigated by confocal microscopy, showing that the polymer also enhanced cellular uptake of the dsRNA. Finally, in vivo feeding RNAi bioassays demonstrated that using these guanidine-containing polymer nanoparticles led to an increased RNAi efficiency in S. exigua. Targeting the essential gene chitin synthase B, we observed that the mortality increased to 53% in the polymer-protected dsRNA treatment compared to only 16% with the naked dsRNA and found that polymer-protected dsRNA completely halted the development of the caterpillars. These results show that using guanylated polymers as a formulation strategy can prevent degradation of dsRNA in the alkaline and strongly nucleolytic gut of lepidopteran insects. Furthermore, the polymer also enhances cellular uptake in lepidopteran midgut cells. This new delivery strategy could be of great use in further fundamental research in lepidopterans, using RNAi as a research tool, and could lead to future applications for RNAi-based pest control of lepidopteran insects.

12.
ACS Nano ; 12(3): 2332-2345, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29505236

RESUMO

In gene therapy, endosomal escape represents a major bottleneck since nanoparticles often remain entrapped inside endosomes and are trafficked toward the lysosomes for degradation. A detailed understanding of the endosomal barrier would be beneficial for developing rational strategies to improve transfection and endosomal escape. By visualizing individual endosomal escape events in live cells, we obtain insight into mechanistic factors that influence proton sponge-based endosomal escape. In a comparative study, we found that HeLa cells treated with JetPEI/pDNA polyplexes have a 3.5-fold increased endosomal escape frequency compared to ARPE-19 cells. We found that endosomal size has a major impact on the escape capacity. The smaller HeLa endosomes are more easily ruptured by the proton sponge effect than the larger ARPE-19 endosomes, a finding supported by a mathematical model based on the underlying physical principles. Still, it remains intriguing that even in the small HeLa endosomes, <10% of the polyplex-containing endosomes show endosomal escape. Further experiments revealed that the membrane of polyplex-containing endosomes becomes leaky to small compounds, preventing effective buildup of osmotic pressure, which in turn prevents endosomal rupture. Analysis of H1299 and A549 cells revealed that endosomal size determines endosomal escape efficiency when cells have comparable membrane leakiness. However, at high levels of membrane leakiness, buildup of osmotic pressure is no longer possible, regardless of endosomal size. Based on our findings that both endosomal size and membrane leakiness have a high impact on proton sponge-based endosomal rupture, we provide important clues toward further improvement of this escape strategy.


Assuntos
Endossomos/metabolismo , Plasmídeos/administração & dosagem , Polietilenoimina/metabolismo , Transfecção , Linhagem Celular , DNA/administração & dosagem , DNA/genética , DNA/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Permeabilidade , Plasmídeos/genética , Plasmídeos/metabolismo , Prótons , Transfecção/métodos
13.
J Colloid Interface Sci ; 520: 64-69, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29529462

RESUMO

HYPOTHESIS: The complete removal of remaining polymer debris after stripping of optical fiber cables is essential for high precision connection between two fibers. It can be anticipated that electrospun porous membranes as cleaning wipes are able to trap and retain polymer debris within their pores. Impregnation of an oil-in-water emulsion as cleaning agent lowers the interfacial tension between debris and the optical fiber thereby enabling the straightforward removal of polymer debris from the optical fiber. EXPERIMENTS: Electrospun membranes of poly(ethylene terephthalate) (PET) and cellulose acetate (CA) were obtained with fiber diameters of 0.430 µm and 2 µm respectively. The oil-in-water emulsion was formulated with 10 wt% medium chain triglyceride (MCT) and 10 wt% Tween 80 surfactant in an aqueous phosphate buffer solution. FINDINGS: In a scoring range from 0 to 5 for which the score 0 indicated superior cleaning and the score 5 referred to the least efficient cleaning, the electrospun fiber mats (without emulsion) scored within the range of 2-4 while emulsion impregnated electrospun fiber mats revealed the best score of 0. A drastic improvement was thus clearly evident from the obtained results when the cleaning emulsion was applied. The materials developed herein thus represent a new class of soft cleaning agents for optical fibers.

14.
Biomaterials ; 158: 95-105, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29306747

RESUMO

Peritoneal metastasis is a major cause of death and preclinical models are urgently needed to enhance therapeutic progress. This study reports on a hybrid hydrogel-polylactic acid (PLA) scaffold that mimics the architecture of peritoneal metastases at the qualitative, quantitative and spatial level. Porous PLA scaffolds with controllable pore size, geometry and surface properties are functionalized by type I collagen hydrogel. Co-seeding of cancer-associated fibroblasts (CAF) increases cancer cell adhesion, recovery and exponential growth by in situ heterocellular spheroid formation. Scaffold implantation into the peritoneum allows long-term follow-up (>14 weeks) and results in a time-dependent increase in vascularization, which correlates with cancer cell colonization in vivo. CAF, endothelial cells, macrophages and cancer cells show spatial and quantitative aspects as similarly observed in patient-derived peritoneal metastases. CAF provide long-term secretion of complementary paracrine factors implicated in spheroid formation in vitro as well as in recruitment and organization of host cells in vivo. In conclusion, the multifaceted heterocellular interactions that occur within peritoneal metastases are reproduced in this tissue-engineered implantable scaffold model.


Assuntos
Neoplasias Peritoneais , Alicerces Teciduais , Microambiente Tumoral , Animais , Biomimética , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química
15.
Int J Bioprint ; 4(2): 144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33102920

RESUMO

The placenta is a transient organ, essential for development and survival of the unborn fetus. It interfaces the body of the pregnant woman with the unborn child and secures transport of endogenous and exogenous substances. Maternal and fetal blood are thereby separated at any time, by the so-called placental barrier. Current in vitro approaches fail to model this multifaceted structure, therefore research in the field of placental biology is particularly challenging. The present study aimed at establishing a novel model, simulating placental transport and its implications on development, in a versatile but reproducible way. The basal membrane was replicated using a gelatin-based material, closely mimicking the composition and properties of the natural extracellular matrix. The microstructure was produced by using a high-resolution 3D printing method - the two-photon polymerization (2PP). In order to structure gelatin by 2PP, its primary amines and carboxylic acids are modified with methacrylamides and methacrylates (GelMOD-AEMA), respectively. High-resolution structures in the range of a few micrometers were produced within the intersection of a customized microfluidic device, separating the x-shaped chamber into two isolated cell culture compartments. Human umbilical-vein endothelial cells (HUVEC) seeded on one side of this membrane simulate the fetal compartment while human choriocarcinoma cells, isolated from placental tissue (BeWo B30) mimic the maternal syncytium. This barrier model in combination with native flow profiles can be used to mimic the microenvironment of the placenta, investigating different pharmaceutical, clinical and biological scenarios. As proof-of-principle, this bioengineered placental barrier was used for the investigation of transcellular transport processes. While high molecular weight substances did not permeate, smaller molecules in the size of glucose were able to diffuse through the barrier in a time-depended manner. We envision to apply this bioengineered placental barrier for pathophysiological research, where altered nutrient transport is associated with health risks for the fetus.

16.
J Pharm Sci ; 106(8): 2106-2114, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28535975

RESUMO

Paclitaxel (PTX) incorporation in poly(lactic-co-glycolic acid) (PLGA) matrices produce films with high tensile rigidity and slow release that fail to deliver the required release rate for most biomedical applications such as in drug eluting stents and cancer treatments. To modify and improve this behavior, a set of poly(diol sebacate)s were synthesized and fully characterized as possible additives. The tensile properties of PLGA blends were evaluated as these materials could be used as coatings in drug eluting stent applications. A significant improvement in mechanical flexibility was observed with 20% additive content, as it reduced the Young's modulus value and increased the maximum deformation at break. PTX release was studied and correlated with the release of additive from PLGA films. An increase in the initial burst release phase was observed on all blends when compared to the control films of PLGA. Modulation of PTX release was achieved by altering the hydrophilicity degree of the additive or its percentage content on the blend. This supports the possibility that PTX was partitioned into the additive phase. Cytotoxicity analyses of novel additives were performed on mouse embryonic fibroblasts NIH/3T3.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Materiais Biocompatíveis/química , Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Portadores de Fármacos/química , Ácido Láctico/química , Paclitaxel/administração & dosagem , Ácido Poliglicólico/química , Polímeros/química , Animais , Materiais Biocompatíveis/toxicidade , Ácidos Decanoicos/toxicidade , Ácidos Dicarboxílicos/toxicidade , Portadores de Fármacos/toxicidade , Módulo de Elasticidade , Ácido Láctico/toxicidade , Camundongos , Células NIH 3T3 , Ácido Poliglicólico/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/toxicidade
17.
Nanomedicine ; 13(7): 2179-2188, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28535990

RESUMO

Pluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-111In-DTPA) on tumor uptake/retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured. In contrast, the intratumoral injection of P94 resulted in elevated levels of radioactivity in the tumor and low levels in other organs, including the liver. Independently from the injection route, the tumor tissue presented long retention of radioactivity. The minimal involvement of off-target tissues of P94, together with the excellent tracer retention over-time in the tumor designates Pluronic P94 copolymer as a highly promising carrier for anti-tumor drugs.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Poloxâmero/administração & dosagem , Poloxâmero/farmacocinética , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Injeções Intralesionais , Injeções Intravenosas , Masculino , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Poloxâmero/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
18.
Carbohydr Polym ; 161: 295-305, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189242

RESUMO

Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration.


Assuntos
Gelatina/química , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Amido/química , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
19.
Mol Pharm ; 13(3): 1158-65, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26883169

RESUMO

Optimal biodistribution and prolonged circulation of nanocarriers improve diagnostic and therapeutic effects of enhanced permeability and retention-based nanomedicines. Despite extensive use of Pluronics in polymer-based pharmaceuticals, the influence of different poly(ethylene oxide) (PEO) block length and aggregation state on the biodistribution of the carriers is rather unexplored. In this work, we studied these effects by evaluating the biodistribution of Pluronic unimers and cross-linked micelles with different PEO block size. In vivo biodistribution of (111)In-radiolabeled Pluronic nanocarriers was investigated in healthy mice using single photon emission computed tomography. All carriers show fast uptake in the organs from the reticuloendothelial system followed by a steady elimination through the hepatobiliary tract and renal filtration. The PEO block length affects the initial renal clearance of the compounds and the overall liver uptake. The aggregation state influences the long-term accumulation of the nanocarriers in the liver. We showed that the circulation time and elimination pathways can be tuned by varying the physicochemical properties of Pluronic copolymers. Our results can be beneficial for the design of future Pluronic-based nanomedicines.


Assuntos
Portadores de Fármacos , Imagem Molecular/métodos , Nanopartículas/química , Poloxâmero/química , Polietilenoglicóis/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Radioisótopos de Índio/administração & dosagem , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Camundongos , Camundongos Endogâmicos A , Micelas , Nanopartículas/administração & dosagem , Polímeros/química , Distribuição Tecidual
20.
J Control Release ; 224: 126-135, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26792572

RESUMO

This work reveals how the physicochemical properties of Pluronic block copolymers influence significantly their interactions with cancer cells, whether in monolayer or spheroid cultures, and how different clinical applications can be foreseen. Two-dimensional (2D) and three-dimensional (3D) cell culture models were used to investigate the interactions of Pluronic carriers with different PEO block length and aggregation state (unimers versus cross-linked micelles) in HeLa and U87 cancer cells. Stabilized micelles of Pluronic P94 or F127 were obtained by polymerization of a crosslinking agent in the micelles hydrophobic core. Nanocarriers were functionalized with a fluorescent probe for visualization, and with a chelator for radiolabeling with Indium-111 and gamma-quantification. The 2D cell models revealed that the internalization pathways and ultimate cellular localization of the Pluronic nanocarriers depended largely on both the PEO block size and aggregation state of the copolymers. The smaller P94 unimers with an average radius of 2.1nm and the shortest PEO block mass (1100gmol(-1)) displayed the highest cellular uptake and retention. 3D tumor spheroids were used to assess the penetration capacity and toxicity potential of the nanocarriers. Results showed that cross-linked F127 micelles were more efficiently delivered across the tumor spheroids, and the penetration depth depends mostly on the transcellular transport of the carriers. The Pluronic P94-based carriers with the shortest PEO block length induced spheroid toxicity, which was significantly influenced by the spheroid cellular type.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Poloxâmero/química , Polietilenoglicóis/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Células Cultivadas , Quelantes , Reagentes de Ligações Cruzadas , Endocitose/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Corantes Fluorescentes , Células HeLa , Humanos , Radioisótopos de Índio/administração & dosagem , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA