RESUMO
SOD1 gene is associated with progressive motor neuron degeneration in the familiar forms of amyotrophic lateral sclerosis. Although studies on mutant human SOD1 transgenic rodent models have provided important insights into disease pathogenesis, they have not led to the discovery of early biomarkers or effective therapies in human disease. The recent generation of a transgenic swine model expressing the human pathological hSOD1G93A gene, which recapitulates the course of human disease, represents an interesting tool for the identification of early disease mechanisms and diagnostic biomarkers. Here, we analyze the activation state of CNS cells in transgenic pigs during the disease course and investigate whether changes in neuronal and glial cell activation state can be reflected by the amount of extracellular vesicles they release in biological fluids. To assess the activation state of neural cells, we performed a biochemical characterization of neurons and glial cells in the spinal cords of hSOD1G93A pigs during the disease course. Quantification of EVs of CNS cell origin was performed in cerebrospinal fluid and plasma of transgenic pigs at different disease stages by Western blot and peptide microarray analyses. We report an early activation of oligodendrocytes in hSOD1G93A transgenic tissue followed by astrocyte and microglia activation, especially in animals with motor symptoms. At late asymptomatic stage, EV production from astrocytes and microglia is increased in the cerebrospinal fluid, but not in the plasma, of transgenic pigs reflecting donor cell activation in the spinal cord. Estimation of EV production by biochemical analyses is corroborated by direct quantification of neuron- and microglia-derived EVs in the cerebrospinal fluid by a Membrane Sensing Peptide enabled on-chip analysis that provides fast results and low sample consumption. Collectively, our data indicate that alteration in astrocytic EV production precedes the onset of disease symptoms in the hSODG93A swine model, mirroring donor cell activation in the spinal cord, and suggest that EV measurements from the cells first activated in the ALS pig model, i.e. OPCs, may further improve early disease detection.
Assuntos
Esclerose Lateral Amiotrófica , Vesículas Extracelulares , Camundongos , Animais , Humanos , Suínos , Superóxido Dismutase-1/genética , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Camundongos Transgênicos , Esclerose Lateral Amiotrófica/patologia , Medula Espinal/patologia , Neuroglia/patologia , Biomarcadores/metabolismo , Peptídeos/metabolismo , Modelos Animais de DoençasRESUMO
Cancer immunotherapy aims to harness the immune system to combat malignant processes. Transformed cells harbor diverse modifications that lead to formation of neoantigens, including aberrantly expressed cell surface carbohydrates. Targeting tumor-associated carbohydrate antigens (TACA) hold great potential for cancer immunotherapy. N-glycolylneuraminic acid (Neu5Gc) is a dietary non-human immunogenic carbohydrate that accumulates on human cancer cells, thereby generating neoantigens. In mice, passive immunotherapy with anti-Neu5Gc antibodies inhibits growth of Neu5Gc-positive tumors. Here, we designed an active cancer vaccine immunotherapy strategy to target Neu5Gc-positive tumors. We generated biomimetic glyconanoparticles using engineered αGal knockout porcine red blood cells to form nanoghosts (NGs) that either express (NGpos) or lack expression (NGneg) of Neu5Gc-glycoconjugates in their natural context. We demonstrated that optimized immunization of "human-like" Neu5Gc-deficient Cmah-/- mice with NGpos glyconanoparticles induce a strong, diverse and persistent anti-Neu5Gc IgG immune response. The resulting anti-Neu5Gc IgG antibodies were also detected within Neu5Gc-positive tumors and inhibited tumor growth in vivo. Using detailed glycan microarray analysis, we further demonstrate that the kinetics and quality of the immune responses influence the efficacy of the vaccine. These findings reinforce the potential of TACA neoantigens and the dietary non-human sialic acid Neu5Gc, in particular, as immunotherapy targets.
Assuntos
Adenocarcinoma/terapia , Materiais Biomiméticos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias do Colo/terapia , Imunoterapia , Nanopartículas/uso terapêutico , Ácidos Neuramínicos/uso terapêutico , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Animais , Materiais Biomiméticos/química , Vacinas Anticâncer/química , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Camundongos , Camundongos Knockout , Ácido N-Acetilneuramínico/análise , Nanopartículas/química , Ácidos Neuramínicos/química , Tamanho da Partícula , SuínosRESUMO
Xenocell therapy from neonate or adult pig pancreatic islets is one of the most promising alternatives to allograft in type 1 diabetes for addressing organ shortage. In humans, however, natural and elicited antibodies specific for pig xenoantigens, α-(1,3)-galactose (GAL) and N-glycolylneuraminic acid (Neu5Gc), are likely to significantly contribute to xenoislet rejection. We obtained double-knockout (DKO) pigs lacking GAL and Neu5Gc. Because Neu5Gc-/- mice exhibit glycemic dysregulations and pancreatic ß-cell dysfunctions, we evaluated islet function and glucose metabolism regulation in DKO pigs. Isolation of islets from neonate piglets yielded identical islet equivalent quantities to quantities obtained from control wild-type pigs. In contrast to wild-type islets, DKO islets did not induce anti-Neu5Gc antibody when grafted in cytidine monophosphate-N-acetylneuraminic acid hydroxylase KO mice and exhibited in vitro normal insulin secretion stimulated by glucose and theophylline. Adult DKO pancreata showed no histological abnormalities, and immunostaining of insulin and glucagon was similar to that from wild-type pancreata. Blood glucose, insulin, C-peptide, the insulin-to-glucagon ratio, and HOMA-insulin resistance in fasted adult DKO pigs and blood glucose and C-peptide changes after intravenous glucose or insulin administration were similar to wild-type pigs. This first evaluation of glucose homeostasis in DKO pigs for two major xenoantigens paves the way to their use in (pre)clinical studies.
Assuntos
Galactose/genética , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ácidos Neuramínicos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Teofilina/farmacologia , Animais , Antígenos Heterófilos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peptídeo C/efeitos dos fármacos , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Galactose/imunologia , Técnicas de Inativação de Genes , Glucagon/efeitos dos fármacos , Glucagon/metabolismo , Homeostase , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Masculino , Ácidos Neuramínicos/imunologia , Pâncreas/metabolismo , Suínos , Transplante HeterólogoRESUMO
Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1-3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1-3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1-3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection.
Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/uso terapêutico , Galactose/deficiência , Doença pelo Vírus Ebola/prevenção & controle , Imunoglobulina G/imunologia , Ácidos Neuramínicos/metabolismo , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Anti-Idiotípicos/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Cobaias , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Masculino , Suínos , Vacinação , Carga ViralRESUMO
BACKGROUND: Human corneal allografting is an established procedure to cure corneal blindness. However, a shortage of human donor corneas as well as compounding economic, cultural, and organizational reasons in many countries limit its widespread use. Artificial corneas as well as porcine corneal xenografts have been considered as possible alternatives. To date, all preclinical studies using de-cellularized pig corneas have shown encouraging graft survival results; however, relatively few studies have been conducted in pig to non-human primate (NHP) models, and particularly using genetically engineered donors. METHODS: In this study, we assessed the potential benefit of using either hCTLA4-Ig transgenic or α1,3-Galactosyl Transferase (GT) Knock-Out (KO) plus transgenic hCD39/hCD55/hCD59/fucosyl-transferase pig lines in an anterior lamellar keratoplasty pig to NHP model. RESULTS: Corneas from transgenic animals expressing hCTLA4-Ig under the transcriptional control of a neuron-specific enolase promoter showed transgene expression in corneal keratocytes of the stroma and expression was maintained after transplantation. Although a first acute rejection episode occurred in all animals during the second week post-keratoplasty, the median final rejection time was 70 days in the hCTLA4-Ig group vs. 21 days in the wild-type (WT) control group. In contrast, no benefit for corneal xenograft survival from the GTKO/transgenic pig line was found. At rejection, cell infiltration in hCTLA4Ig transgenic grafts was mainly composed of macrophages with fewer CD3+ CD4+ and CD79+ cells than in other types of grafts. Anti-donor xenoantibodies increased dramatically between days 9 and 14 post-surgery in all animals. CONCLUSIONS: Local expression of the hCTLA4-Ig transgene dampens rejection of xenogeneic corneal grafts in this pig-to-NHP lamellar keratoplasty model. The hCTLA4-Ig transgene seems to target T-cell responses without impacting humoral responses, the control of which would presumably require additional peripheral immunosuppression.
Assuntos
Ceratócitos da Córnea/metabolismo , Transplante de Córnea/métodos , Rejeição de Enxerto/prevenção & controle , Imunoconjugados/metabolismo , Transgenes , Transplante Heterólogo/métodos , Abatacepte , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Ceratócitos da Córnea/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Imunoconjugados/genética , Macaca fascicularis , Masculino , Modelos Animais , Sus scrofa/genéticaRESUMO
The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.
Assuntos
Animais Geneticamente Modificados/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Suínos/metabolismo , Animais , Animais Geneticamente Modificados/genética , Blastocisto/metabolismo , Células Cultivadas , Clonagem de Organismos , Transferência Embrionária , Feminino , Fibroblastos/citologia , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células Germinativas/metabolismo , Masculino , Suínos/genética , Transfecção , Transgenes/genéticaRESUMO
Amongst the many variables that can determine success of cloning, the source of nuclei, the procedure used for nuclear transfer, and the activation of the reconstructed embryo are very important aspects. In this study, we have compared the two most common procedures for transferring nuclei to enucleated oocytes--cell fusion (CF) and piezoelectric microinjection (PEM) using different somatic cells--and we have investigated the effect of different activation procedures. Granulosa cells and fibroblasts were grown to confluency or in low serum to induce a quiescent state, while lymphocytes were thawed immediately prior to use. Enucleated oocytes were reconstructed either with CF or PME by 21-23 h postmaturation. For cell fusion, one pulse of 1 kVolt/cm for 30 microsec was used; for PEM, the cell membrane was broken by repeated pipetting and transferred in a 12% PVP solution to facilitate injection. Manipulated oocytes were activated with ionomycin and cycloheximide (CHX) or 6-DMAP (DMAP) and cultured in microdrops of SOF-BSA-AA. On day 7 (day 0: nuclear transfer), embryo development was evaluated and embryos were either transferred fresh or were frozen. More embryos were successfully reconstructed with PEM than CF, but a higher number of reconstructed embryos by CF developed to blastocyst at D + 7. In addition, in both systems more embryos were obtained after activation with DMAP than with CHX. The transfer of 141 embryos to recipients resulted in a pregnancy rate of 50%, and no differences were observed between the source of donor cell, the reconstruction methods, or the activation protocol. Six calves were delivered at term, and four survived. High pregnancy losses were observed throughout the gestation period.